

Clustering of the Lung Cancer Data

Big Data Summer Institute University of Michigan

Swapnaneel Bhattacharyya Srijan Chattopadhyay

Indian Statistical Institute, Kolkata swapnanee@umich.edu\srijanch@umich.edu

Goals of this work

Introduction

Clustering o Patients

Visualizing the Clusters

Clusterwis Analysis

In this work,

- We obtain the clustering of the patients based on the spatial information present in the multiplex images.
- In the obtained clusters we find the clusterwise survival probabilities and plot the Kaplan–Meier curves.

Clustering of Patients

Introductio

Clustering of Patients

Clusters

Analysis

- We first obtain the clustering of the patients based on the spatial information present in the multiplex images.
- For that, for each patient, we first choose the image with the highest number of points.
- Now from that image, we summarize the spatial information.
- For each patient, we find the **the deciles** of absolute difference of K-function(K(r)) and **Permuted** K-function($\tilde{K}(r)$).
- We also estimate the intensities of the point processes generated by each of the cell types in the images of each patient.

Visualizing $|K(r) - \tilde{K}(r)|$

5e+05

Introductio

Clustering of Patients

Visualizing the Clusters

Visualizing $|K(r) - \tilde{K}(r)|$

Introductio

Clustering of Patients

Visualizing the Clusters

Visualizing the Intensities

Clustering of **Patients**

Figure: Intensities for CD14 (macrophages), CD4 (helper T cells)

Visualizing the Intensities

Clustering of **Patients**

Figure: Intensities for CD8 (cytotoxic T cells) and Other Cell **Types**

Estimating Intensities

Introduction

Clustering o Patients

Clusters

Analysis

- For each patient, each of the cell types introduces a spatial point pattern.
- We estimate those intensities by the kernel density estimator ([1])

$$\hat{\lambda}(u) = \frac{\sum_{i=1}^{n} \kappa(u - x_i)}{\int_{W} \kappa(u - v) dv}$$

where $\{x_i\}_{i=1}^n$ are point positions.

- That intensities are estimated in the form of a matrix, we make them vector.
- So for each patient, for a fixed cell type (say, B Cells) we have a vector of estimated intensities.
- Combine the vectors row-wise and perform PCA to reduce the number of columns of the data frame.

Estimating Intensities

Introductio

Clustering of Patients

Clusters

Analysis

- We consider the principal components explaining 90% of the variation.
- So for all of the cell types we have a matrix of principal components of the intensities.
- We take the *K*-function deciles and these estimated intensities as covariates.

Preparing the combined dataset

Introductio

Clustering o Patients

Clusters

- We now combine the deciles of K-functions, intensities, and the proportion of cell types in a single dataset.
- So we have 238 spatial features in total.
- For some of the patients, we have missing values for some of these features. We remove those patients from our dataset.
- After removal, there are 127 patients in total.
- No significant correlations was found between almost all of the existing features.

A look at the final data

Introduction

Clustering of Patients

Visualizing the

Figure: The Combined Dataset

At a Glance

Introduction

Clustering of Patients

Visualizing the Clusters

Clustering of the patients

Introduction

Clustering o Patients

Visualizing the Clusters

- In the combined dataset, we use this spatial information for clustering.
- We use Partitioning around Medoid (PAM) algorithm for clustering patients according to all the spatial features collected from the images.
- The PAM algorithm searches for *k* representative objects in a data set (*k* medoids) and then assigns each object to the closest medoid to create clusters.
- It aims to minimize the sum of dissimilarities between the objects in a cluster and the center of the same cluster (medoid).
- It is known to be a robust version of the k-means algorithm as the median is more robust than the mean to outliers.

Choosing k

Introductio

Clustering o Patients

Visualizing the Clusters

Analysis

- For a k, let A_1, \dots, A_k be the data matrices broken cluster-wise where a column represents a feature.
- For the *r*th feature, let p_r be the median of $p_{i,j}^r$ over $(i,j): i,j \in \{1,2,\cdots,n\}, i \leq j$ where for each of $\binom{n+1}{2}$ pairs (i,j), $p_{i,j}^r$ is the p-value for the exact two-sample Kolmogorov-Smirnov test between the vectors $A_i[,r]$ and $A_j[,r]$.
- Let $p_{(1)} \le p_{(2)} \le \cdots \le p_{(238)}$ be the ordered values p_1, \cdots, p_{238} . (There are 238 features in total).
- Let $S_k = p_{(1)} + \cdots + p_{(24)}$, i.e. taking top 10% of the p values only.
- We choose the K which minimizes S_k .
- The optimal number of clusters turns out to be 2.

Optimal number of Clusters

Clustering of **Patients**

Figure: S_k vs k (k = Number of Clusters)

Clustering for k = 2

Patients

- There are 127 patients in the combined dataset.
- In the optimal clustering, the two clusters have 36 and 91 patients.
- In the 1st cluster 15 patients survived, while 21 couldn't. Whereas, in the 2nd cluster, 36 patients survived and 55 couldn't.

Heatmap of features across clusters

Introduction

Clustering of Patients

Visualizing the Clusters

- We now find the features that have maximum variation across the two clusters.
- For each of the features, we perform a two-sided Kolmogorov Smirnov (KS) exact test between the set of values taken by the feature in two clusters.
- For the heatmap, we take the features having p-value < 0.05 with a multiple testing correction.

Heatmap

Introduction

Clustering of Patients

Visualizing the Clusters

Clusterwis Analysis

Figure: CD14 (macrophages), CD4 (helper T cells), CD8 (cytotoxic T cells), CD19 (B cells), CK (Cancer Cells) and Other Cell Types

At a glance

Introductio

Clustering of Patients

Visualizing the Clusters

Analysis

Estimated CDFs of the features across clusters

Visualizing the Clusters

Estimated CDFs of the features across clusters

Introductio

Clustering of

Visualizing the Clusters

Clusterwise demographics

Introduction

Clustering of Patients

Visualizing the Clusters

Clusterwise Analysis

Cluster 1

55.56% in 1st stage, 19.44% in 2nd stage, 22.22% in 3rd stage and 2.78% in 4th stage

55.56% are male and 44.44% are female

91.67% didn't receive therapy

Cluster 2

63.74% in 1st stage, 21.98% in 2nd stage, 9.89% in 3rd stage, 4.39% in 4th stage

49.45% are male and 50.55% are female

83.52% didn't receive therapy

Comparison of Age

roduction

Clustering of Patients

Visualizing the

Survival Plot

Introduction

Clustering of Patients

Visualizing the Clusters

Figure: Clusterwise Survival Probabilities over Time

Comparing Cell type Proportions

Introduction

Clustering o Patients

Visualizing the Clusters

- To compare the proportions of the cell types in images of two clusters we find the entropy of the cell-type proportion of each of the images.
- So for an image if the proportions of the 6 cell types are p_1, \dots, p_6 , we find $H = -\sum_{i=1}^6 p_i \cdot \log_2 p_i$
- We compare the distribution of this H between two clusters.

Comparing Entropy - The Boxplot

troduction

Clustering of Patients

Visualizing the Clusters

Conclusion

Introductio

Patients

Visualizing the Clusters

Limitations and Future Work

Introduction

Clustering of Patients

Visualizing the Clusters

- In this study we extract the spatial information from the multiplex images using *K*−Functions and we can capture the joint effect of only two cell types (using *K*−Cross Function). So we can not capture the joint spatial effect of three or more cell types.
- The Principal Components of the intensities are not very much interpretable.
- The sample size (i.e. number of patients) is too small.
- A Sensitivity analysis of chosing deciles (instead of more detailed quantile levels) can be done to choose the most optimal cutpoints to capture maximum information.

Summary of the Whole Work

roduction

Clustering of Patients

Visualizing the

References

Introduction

Clustering of Patients

Visualizing the Clusters

Clusterwise Analysis

DIMPLE: An R package to quantify, visualize, and model spatial cellular interactions from multiplex imaging with distance matrices

Patterns, 4,12,2023,Elsevier.

Thank You

