Calculus (Problem Set)

Srijan Chattopadhyay

July 21, 2025

- 1. $X_0, X_1, \alpha \in (0,1)$. $X_{n+1} = \alpha X_n + (1-\alpha)X_{n-1} \ \forall n \geq 1$. Prove that, $\{X_n\}$ converges and find the limit.
- 2. If $f: \mathbb{R} \to \mathbb{R}$ satisfies f(x+y) = f(x) + f(y) and f is monotonically increasing. Then, prove that $\exists a$ such that $f(x) = ax \ \forall x \in \mathbb{R}$.
- 3. Algorithm to Compute $\sqrt{\alpha}, \alpha > 0$: Start with any $x_1 > \sqrt{\alpha}$. Define $x_{n+1} = \frac{1}{2}(x_n + \frac{\alpha}{x_n})$. Show that $\{x_n\}$ is monotonically decreasing and hence find the limit of $\{x_n\}$.
- 4. Prove that for any prime $p \geq 3$, the number $\binom{2p-1}{p-1} 1$ is divisible by p^2 .
- 5. For sets A,B, let $f:A\to B$ and $g:B\to A$ be functions such that f(g(x))=x for each x. Prove that :
 - \bullet f need not be one one
 - f must be onto
 - \bullet g must be one one
 - q need not to be onto.
- 6. Let $x_n \to x$ and $y_n \to y$. Then, prove that $\frac{x_1y_n + x_2y_{n-1} + \dots + x_ny_1}{n} \to xy$.
- 7. Let $0 < a \le x_1 \le x_2 \le b$. Define $x_n = \sqrt{x_{n-1}x_{n-2}}$ for $n \ge 3$. Show that $a \le x_n \le b$ and $|x_{n+1} x_n| \le \frac{b}{a+b}|x_n x_{n-1}|$ for $n \ge 2$. Prove $\{x_n\}$ is convergent.
- 8. Let $0 < y_1 < x_1$. Define $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_n y_n}$, for $n \in \mathbb{N}$. Prove that:
 - $\{y_n\}$ is increasing and bounded above while $\{x_n\}$ is decreasing and bounded below.
 - $0 < x_{n+1} y_{n+1} < 2^{-n}(x_1 y_1)$ for $n \in \mathbb{N}$.
 - Prove that x_n and y_n converge to the same limit.
- 9. Euler's Constant: Let

$$\gamma_n = \sum_{k=1}^n \frac{1}{k} - \log n = \sum_{k=1}^n \frac{1}{k} - \int_1^n t^{-1} dt$$

- Show that γ_n is a decreasing sequence.
- Show that $0 < \gamma_n \le 1$ for all n.
- $\lim \gamma_n$ exists and is denoted by γ . The real real number γ is called the Euler's constant.
- 10. Evaluate $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n \cdot 3^m + m \cdot 3^n)}$
- 11. Find the value of $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^i 3^j 3^k}$, where the sum is taken over i, j, k such that no two of them can be equal.
- 12. Let $S_n, n = 1, 2, 3, \cdots$ be the sum of infinite geometric series, whose first term is n and the common ratio is $\frac{1}{n+1}$. Evaluate

1

$$\lim_{n\to\infty} \frac{S_1 S_n + S_2 S_{n-1} + S_3 S_{n-2} + \dots + S_n S_1}{S_1^2 + S_2^2 + \dots + S_n^2}$$

- 13. $t_n = \frac{n^5 + n^3}{n^4 + n^2 + 1}$, $S_r = \sum_{n=1}^r t_r$. Find an explicit expression of S_r .
- 14. Find the following limits (if exists):
 - $\bullet \lim_{x \to 0} \frac{(x \sin x)}{x^3}$
 - $\bullet \lim_{x \to 0} \frac{(e^x 1 x)}{x^2}$
 - $\lim_{x\to 0} (\frac{a^x + b^x + c^x}{3})^{1/x}, a, b, c > 0$
 - $\lim_{x\to 0} ((x+a)(x+b)(x+c))^{1/3} x$
- 15. $f: \mathbb{R} \to \mathbb{R}$ satisfying $|f(x) f(y)| \le \lambda |x y|$ for all $x, y \in \mathbb{R}$ for some $\lambda > 0$. Prove that f is continuous (This is called **Lipschitz continuous**).
- 16. Find all $f: \mathbb{R} \to \mathbb{R}$ satisfying $|f(x) f(y)| \le \lambda (x y)^2$ for all $x, y \in \mathbb{R}$ for some $\lambda > 0$.
- 17. $f(x) = x \sin(1/x)$ if $x \neq 0$ and $x \neq 0$ and x = 0. Prove that $x \neq 0$ is continuous.
- 18. Can you find minimum value of r such that if $f(x) = x^r \sin(1/x)$ if $x \neq 0$ and $x \neq 0$ and $x \neq 0$ then $x \neq 0$ is at least once differentiable?
- 19.

$$f(x) = \left\{ \begin{array}{ll} 0, & \text{for } x \in Q \\ 1, & \text{for } x \in Q^c \end{array} \right\}$$

- Q is the set of all rational numbers. Find all continuity points of f (This function is called Dirichlet Function).
- 20. Can there exist any continuous $f: \mathbb{R} \to \mathbb{R}$ which is rational on irrational points and irrational on rational points?
- 21. $f: \mathbb{R} \to \mathbb{R}$ and $\exists \alpha \in (0,1)$ such that $|f(x) f(y)| \le \alpha |x y|$. Prove that f has a unique fixed point. (A point x is called a fixed point of f is f(x) = x).
- 22. $f, g : [0,1] \to [0,1]$ are continuous functions such that f(g(x)) = g(f(x)) for all $x \in \mathbb{R}$. Show that $\exists c \in [0,1]$ such that f(c) = g(c).
- 23. Suppose that a function f is continuous on the interval [a,b] and differentiable on (a,b). If the graph of f is not a line segment, prove that there exists a point $c \in (a,b)$ such that $|f'(c)| > |\frac{f(b)-f(a)}{b-a}|$
- 24. Let f be a twice differentiable function on the open interval (-1,1) such that f(0)=1. Suppose f also satisfies $f(x) \ge 0$, $f'(x) \le 0$ and $f''(x) \le f(x)$, for all $x \ge 0$. Show that $f'(0) \ge -\sqrt{2}$.
- 25. Find the limit

$$\lim_{x\to 0} \frac{\sin\tan x - \tan\sin x}{\arcsin\arctan x - \arctan\arcsin x}$$

26. Calculate the 100th derivative of the function

$$\frac{x^2+1}{x^3-x}$$

27. Let $f: \mathbb{N} \to \mathbb{N}$ be a bijection of the positive integers. Prove that at least one of the following limits is true:

$$\lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n + f(n)} = \infty; \qquad \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{f(n)} \right) = \infty.$$

28. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f'(x) > f(x) > 0 for all real numbers x. Show that f(8) > 2024 f(0).

29. Evaluate

$$\frac{1/2}{1+\sqrt{2}} + \frac{1/4}{1+\sqrt[4]{2}} + \frac{1/8}{1+\sqrt[8]{2}} + \frac{1/16}{1+\sqrt{16}} + \cdots$$

- 30. Prove that for any function $f : \mathbb{Q} \to \mathbb{Z}$, there exist $a, b, c \in \mathbb{Q}$ such that a < b < c, $f(b) \ge f(a)$ and $f(b) \ge f(c)$.
- 31. Define the sequence x_1, x_2, \ldots by the initial terms $x_1 = 2, x_2 = 4$, and the recurrence relation

$$x_{n+2} = 3x_{n+1} - 2x_n + \frac{2^n}{x_n}$$
 for $n \ge 1$.

Prove that $\lim_{n\to\infty} \frac{x_n}{2^n}$ exists and satisfies

$$\frac{1+\sqrt{3}}{2} \le \lim_{n \to \infty} \frac{x_n}{2^n} \le \frac{3}{2}.$$

- 32. Let $x_1 = 2021$, $x_n^2 2(x_n + 1)x_{n+1} + 2021 = 0$ $(n \ge 1)$. Prove that the sequence x_n converges. Find the limit $\lim_{n\to\infty} x_n$
- 33. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove that

$$\left| f(1) - \int_0^1 f(x) dx \right| \le \frac{1}{2} \max_{x \in [0,1]} |f'(x)|.$$

- 34. Let 0 < a < 1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ continuous at x = 0 such that $f(x) + f(ax) = x, \forall x \in \mathbb{R}$.
- 35. How many ordered pairs of real numbers (a,b) satisfy equality $\lim_{x\to 0} \frac{\sin^2 x}{e^{ax}-2bx-1} = \frac{1}{2}$?
- 36. For a given integer $n \geq 1$, let $f:[0,1] \to \mathbb{R}$ be a non-decreasing function. Prove that

$$\int_{0}^{1} f(x)dx \le (n+1) \int_{0}^{1} x^{n} f(x)dx.$$

37. For n = 1, 2, ... let

$$S_n = \log\left(\sqrt[n^2]{1^1 \cdot 2^2 \cdot \ldots \cdot n^n}\right) - \log(\sqrt{n}),$$

where log denotes the natural logarithm. Find $\lim_{n\to\infty} S_n$.

38. Let V be the set of all continuous functions $f:[0,1]\to\mathbb{R}$, differentiable on (0,1), with the property that f(0)=0 and f(1)=1. Determine all $\alpha\in\mathbb{R}$ such that for every $f\in V$, there exists some $\xi\in(0,1)$ such that

$$f(\xi) + \alpha = f'(\xi)$$

- 39. Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose second derivative is continuous. Suppose that f and f'' are bounded. Show that f' is also bounded.
- 40. Calculate the exact value of the series $\sum_{n=2}^{\infty} \log(n^3 + 1) \log(n^3 1)$ and provide justification.
- 41. Find the limit

$$\lim_{n\to\infty} \left(\frac{\left(1+\frac{1}{n}\right)^n}{e} \right)^n.$$

42. A real-valued function f defined in (a, b) is said to be convex if

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

3

whenever a < x < b, a < y < b, $0 < \lambda < 1$.

• Prove that every convex function is continuous.

- Prove that every increasing convex function of a convex function is convex.
- If f is convex in (a, b) and if a < s < t < u < b, show that

$$\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}.$$

- Let $f:(a,b)\to\mathbb{R}$ such that f'' exists on (a,b). Then f is convex iff $f''(x)>0 \ \forall x\in(a,b)$.
- 43. $f:[0,1]\to\mathbb{R}$ differentiable on (0,1), such that $\exists a,b\in(0,1)$ such that $\int_0^a f(x)dx=0$ and $\int_b^1 f(x)dx=0$. Also, $|f'(x)|\le M \ \forall x\in(0,1)$. Prove that $|\int_0^1 f(x)dx|\le\frac{(1-a+b)M}{4}$.
 - First prove that, $\left|\int_0^1 f(x)dx\right| \leq \frac{M(1-a)}{2}$ [Hint: Use MVT and a substitution to use $\int_0^a f(x)dx = 0$, Think how you can transform the interval (0,1) to (0,a)].
 - Then, prove that $|\int_0^1 f(x)dx| \le \frac{Mb}{2}$ [Hint: Again use MVT and a substitution to use $\int_b^1 f(x)dx = 0$, Think how you can transform the interval (0,1) to (b,1)]
- 44. Show that there doesn't exist any increasing differentiable function $f: \mathbb{R} \to \mathbb{R}^+$ such that f(f(x)) = f'(x)
- 45. Determine all continuous functions $f:[0,1]\to\mathbb{R}$ that satisfy $\int_0^1 f(x)(1-f(x))dx=\frac{1}{12}$
- 46. Let $f(x) = \int_0^1 |t x| t dt \ \forall x \in \mathbb{R}$. Sketch the graph of f(x). What is the minimum value of f(x).
- 47. $f(x) = \int_x^{x+1} \sin(u^2) du$, find $\lim_{x \to \infty} f(x)$, if it exists.
- 48. The sequence $\{q_n(x)\}$ of polynomials is defined by

$$q_1(x) = 1 + x, \quad q_2(x) = 1 + 2x$$

and for $m \ge 1$ by

$$q_{2m+1}(x) = q_{2m}(x) + (m+1)xq_{2m-1}(x),$$

$$q_{2m+2}(x) = q_{2m+1}(x) + (m+1)xq_{2m}(x).$$

Let x_n be the largest real solution of $q_n(x) = 0$. Prove that

- (a) the sequence $\{x_n\}$ is increasing.
- (b) $x_{2m+2} > -\frac{1}{m+1}$ for $m \ge 1$.
- (c) the sequence $\{x_n\}$ converges to 0.
- 49. Let the positive integers a, b, c be such that $a \ge b \ge c$ and $(a^x b^x c^x)(x 2) > 0$ for all $x \ne 2$. Show that a, b, c are sides of a right-angled triangle.
- 50. Let $f:[0,1]\to\mathbb{R}$ be a differentiable function such that f' is continuous and

$$f(0) = 0, \quad f(1) = 1.$$

(a) Show that there exists x_1 in (0,1) such that

$$\frac{1}{f'(x_1)} = 1.$$

(b) Show that there exist distinct x_1, x_2 in (0,1) such that

$$\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2.$$

(c) Show that for a positive integer n, there exist distinct x_1, x_2, \ldots, x_n in (0,1) such that

$$\sum_{i=1}^{n} \frac{1}{f'(x_i)} = n.$$

- 51. Define a sequence (a_n) for $n \ge 1$ by $a_1 = 2$ and $a_{n+1} = a_n^{1+n^{-3/2}}$. Is $\lim_{n \to \infty} a_n < \infty$?
- 52. Let $P(x) = x^{100} + 20x^{99} + 198x^{98} + a_{97}x^{97} + \ldots + a_1x + 1$ be a polynomial where the a_i $(1 \le i \le 97)$ are real numbers. Prove that the equation P(x) = 0 has at least one nonreal root.
- 53. Find $\lim_{x\to\infty} \left((2x)^{1+\frac{1}{2x}} x^{1+\frac{1}{x}} x \right)$
- 54. Find $\sum_{k=1}^{\infty} \frac{k^2-2}{(k+2)!}$.
- 55. A sequence (a_n) is defined by $a_0 = -1$, $a_1 = 0$, and $a_{n+1} = a_n^2 (n+1)^2 a_{n-1} 1$ for all positive integers n. Find a_{100} .
- 56. Suppose that $f: [-1,1] \to \mathbb{R}$ is continuous and satisfies

$$\left(\int_{-1}^{1} e^x f(x) dx\right)^2 \ge \left(\int_{-1}^{1} f(x) dx\right) \left(\int_{-1}^{1} e^{2x} f(x) dx\right).$$

Prove that there exists a point $c \in (-1,1)$ such that f(c) = 0. [You can assume CS inequality for integrals.]

57. Let f and g be two continuous, distinct functions from $[0,1] \to (0,+\infty)$ such that

$$\int_0^1 f(x)dx = \int_0^1 g(x)dx$$

Let

$$y_n = \int_0^1 \frac{f^{n+1}(x)}{g^n(x)} dx$$
, for $n \ge 0$, natural.

Prove that (y_n) is an increasing and divergent sequence.

- 58. Consider a function $f:[0,1] \to [0,1]$ satisfying the following property |f(x) f(y)| < |x y| for all $x, y \in X, x \neq y$. Show that f has a fixed point. Is the fixed point unique? [Hint: Define d(x) = |x f(x)|. Suppose $\inf_x d(x) \geq \epsilon > 0$. Assume $\exists x_0$ such that the infimum is attained. (Can you prove this? You can skip if you can't!). Then, use the property of f to arrive at a contradiction.]
- 59. Let $f: \mathbb{R} \to \mathbb{R}$ be a function given by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 5x - 6 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Find continuity points of f.

- 60. Show that the polynomial equation with real coefficients $a_n x^n + a_{n-1} x^{n-1} + \dots + a_3 x^3 + x^2 + x + 1 = 0$ cannot have all real roots.
- 61. Assume that $f: \mathbb{R} \to \mathbb{R}$ is a continuous, one-to-one function. If there exists a positive integer n such that $f^n(x) = x$, for every $x \in \mathbb{R}$, then prove that either f(x) = x or $f^2(x) = x$. (Note that $f^n(x) = f(f^{n-1}(x))$.)
- 62. Consider $f(x) = \frac{x^3}{6} + \frac{x^2}{2} + \frac{x}{3} + 1$. Prove that f(x) is an integer whenever x is an integer. Determine with justification, conditions on real numbers a, b, c and d so that $ax^3 + bx^2 + cx + d$ is an integer for all integers x.
- 63. (a) Show that there does not exist a function $f:(0,\infty)\to(0,\infty)$ such that

$$f''(x) \leq 0$$
 for all x and $f'(x_0) < 0$ for some x_0 .

(b) Let $k \geq 2$ be any integer. Show that there does not exist an infinitely differentiable function $f:(0,\infty)\to(0,\infty)$ such that

$$f^{(k)}(x) \le 0$$
 for all x and $f^{(k-1)}(x_0) < 0$ for some x_0 .

Here, $f^{(k)}$ denotes the k^{th} derivative of f.

- 64. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Can you put appropriate conditions on f, so that f restricted to $(a, b), -\infty < a < b < \infty$ can't attain it's maximum and minimum inside (a, b)?
- 65. Let $a, b \in \mathbb{Z}$ and b > 0. Let $f: [-1, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^a \sin(x^{-b}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Prove that

- (a) f is continuous if and only if a > 0.
- (b) f'(0) exists if and only if a > 1.
- (c) f' is bounded if and only if $a \ge 1 + b$.
- (d) f' is continuous if and only if a > 1 + b.
- 66. Let $f:(0,1]\to\mathbb{R}$ be a differentiable function with f' bounded on (0,1]. Define

$$a_n = f\left(\frac{1}{n}\right), \quad n \ge 1.$$

Show that $\{a_n\}$ is a convergent sequence.

- 67. Let f be a thrice differentiable function on (0,1) such that $f(x) \ge 0$ for all $x \in (0,1)$. If f(x) = 0 for at least two values of $x \in (0,1)$, prove that f'''(c) = 0 for some $c \in (0,1)$.
- 68. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and that f(x+1) f(x) converges to 0 as $x \to \infty$. Then show that

$$\frac{f(x)}{x} \to 0$$
 as $x \to \infty$.

69. Let f be continuous, non-negative, and assume that

$$\int_0^\infty f(x) \, dx < \infty.$$

Then show that

$$\lim_{n \to \infty} \frac{1}{n} \int_0^n x f(x) \, dx = 0.$$

70. Let $f:[0,1]\to\mathbb{R}$ be a real-valued continuous function which is differentiable on (0, 1) and satisfies f(0)=0. Suppose that there exists a constant $c\in(0,1)$ such that

$$|f'(x)| \le c|f(x)|$$
 for every $x \in (0,1)$.

Show that f(x) = 0 for all $x \in [0, 1]$.

- 71. Suppose $F : \mathbb{R} \to \{0,1\}$ is a function, i.e. F only takes two values 0 and 1. Suppose F is non decreasing, right continuous, and $\lim_{x \to \infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$. Prove that there exists some $x \in \mathbb{R}$ such that F(y) = 1 for all real $y \ge x$, and F(y) = 0 for all real y < x.
- 72. Consider a container of the shape obtained by revolving a segment (From y=0 to y=5) of the curve $x=e^{\frac{y}{5}}$ around the y-axis. The container is initially empty. Water is poured at a constant rate of π cm³ into the container. Let h(t) be the height of water inside the container at time t. Find h(t) as a function of t.

6

73. Let $f:[0,\infty)\to\mathbb{R}$ be differentiable and satisfy

$$f'(x) = -3f(x) + 6f(2x)$$

for x > 0. Assume that $|f(x)| \le e^{-\sqrt{x}}$ for $x \ge 0$. For $n \in \mathbb{N}$, define

$$\mu_n = \int_0^\infty x^n f(x) dx.$$

- a. Express μ_n in terms of μ_0 . b. Prove that the sequence $\frac{3^n \mu_n}{n!}$ always converges, and the the limit is 0 only if μ_0 .
- 74. Suppose $f: \mathbb{R} \to [0, \infty)$. For $\epsilon > 0$, define $f_{\epsilon}: \mathbb{R} \to [0, \infty)$ by

$$f_{\epsilon}(x) = n\epsilon$$
 when $n\epsilon < f(x) < (n+1)\epsilon$

Prove that $f_{\epsilon}(x) \to f(x)$ for all $x \in \mathbb{R}$ as $\epsilon \to 0$.

- 75. Suppose f_1, f_2, \dots, f_n are convex function from \mathbb{R} to \mathbb{R} . Prove that $M(x) = \max\{f_1(x), \dots, f_n(x)\}$ is also convex. [A function is called convex if for all $x, y \in \mathbb{R}$ and $\alpha \in [0, 1]$, $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$]. Can you say anything about the minimum function? 9 + 1
- 76. Assume that $f: \mathbb{R} \to \mathbb{R}$ is a continuous, one-one function. If there exists a positive integer n such that $f^n(x) = x$, for every $x \in \mathbb{R}$, then prove that either f(x) = x or $f^2(x) = x$. (Note that $f^n(x) = f(f^{n-1}(x))$.)
- 77. Suppose $f: \mathbb{R} \to [0, \infty)$. Define the following functions for $n \in \mathbb{N}$

$$s_n(x) = \begin{cases} n & \text{if } f(x) \ge n \\ 2^{-n}i & \text{if } 2^{-n}i \le f(x) \le 2^{-n}(i+1), i = 0, 1, 2, \dots, n \cdot 2^n - 1 \end{cases}$$

Prove that $s_1 \leq s_2 \leq s_3 \leq \cdots$. Also, prove that $\forall x, s_n(x) \to f(x)$ as $n \to \infty$.

- 78. Define $\{x_n\}_{n\in\mathbb{N}}$ as $x_0=1$, and, $x_{n+1}=\ln(e^{x_n}-x_n)$. Prove that $\sum_{n=0}^{\infty}x_n$ converges, hence find the value.
- 79. Let $f:[a,b]\to\mathbb{R}$ be a differentiable function such that $0\leq f'(x)\leq 1$ and f(a)=0. Show that

$$3\left(\int_a^b f(x)^2 dx\right)^3 \ge \int_a^b f(x)^8 dx.$$

80. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be a differentiable function. Let

$$J = \left\{ \frac{f(b) - f(a)}{b - a} : a, b \in I, a < b \right\}$$

Show that

- a) J is an interval.
- b) $J \subseteq f'(I)$ and f'(I) J contains at most two elements.
- 81. Let f be a continuous function on [0,1] such that for every $x \in [0,1]$, we have $\int_{x}^{1} f(t)dt \ge \frac{1-x^2}{2}$. Show that $\int_{0}^{1} f(t)^2 dt \ge \frac{1}{3}$.
- 82. Let $(x_n)_{n\in\mathbb{N}}$ be the sequence defined as $x_n = \sin(2\pi n! e)$ for all $n \in \mathbb{N}$. Compute $\lim_{n\to\infty} x_n$.

7

83. Let $f: \mathbb{R} \to \mathbb{R}$ be a function which is differentiable at 0. Define another function $g: \mathbb{R} \to \mathbb{R}$ as follows:

$$g(x) = \begin{cases} f(x)\sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Suppose that g is also differentiable at 0. Prove that

$$g'(0) = f'(0) = f(0) = g(0) = 0.$$

84. Determine all the pairs of positive real numbers (a,b) with a < b such that the following series

$$\sum_{k=1}^{\infty} \int_{a}^{b} \{x\}^{k} dx = \int_{a}^{b} \{x\} dx + \int_{a}^{b} \{x\}^{2} dx + \int_{a}^{b} \{x\}^{3} dx + \cdots$$

is convergent and determine its value in function of a and b. $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of x. Assume you can swap the integral and summation.

85. Determine all continuous functions $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ that satisfy

$$f(x) = (x+1)f(x^2),$$

for all $x \in \mathbb{R} \setminus \{-1, 1\}$.

- 86. Let $f:[0,1]\to (0,\infty)$ be a continuous function satisfying $\int_0^1 f(t)dt=\frac{1}{3}$. Show that there exists $c\in (0,1)$ such that $\int_0^c f(t)dt=c-\frac{1}{2}$.
- 87. Determine all ordered pairs of real numbers (a, b) such that the line y = ax + b intersects the curve $y = \ln(1 + x^2)$ in exactly one point.
- 88. Let $f:(a,b)\to\mathbb{R}$ is continuously differentiable, $\lim_{x\to a^+} f(x)=\infty$, $\lim_{x\to b^-} f(x)=-\infty$ and $f'(x)+f^2(x)\geq -1$ for $x\in (a,b)$. Prove that $b-a\geq \pi$ and give an example where $b-a=\pi$.
- 89. Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose second derivative is continuous. Suppose that f and f'' are bounded. Show that f' is also bounded.
- 90. Consider the sequence $(a_n)_{n\geqslant 1}$ defined by $a_1=1/2$ and $2n\cdot a_{n+1}=(n+1)a_n$. Determine the general formula for a_n . Let $b_n=a_1+a_2+\cdots+a_n$. Prove that $\{b_n\}-\{b_{n+1}\}\neq\{b_{n+1}\}-\{b_{n+2}\}$.
- 91. If $f:[0,\infty]\to\mathbb{N}$ is a right continuous function having left limits. Show that $\forall t\in[0,\infty)$, the set $\{y:f(x)=y,x\in[0,t]\}$ has a finite number of points, i.e., the range for each closed and bounded interval starting from 0 has a finite number of points. [Hint: You can use the fact that each bounded sequence has a convergent subsequence.]