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I would like to dedicate this to the loving memory
of Prof. Debabrata Basu in his birth centenary, whose
profound contributions to statistics continue to inspire and
illuminate our journey in this field. His legacy of brilliance
and humility remains an enduring beacon for us all.
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What is Causal Inference?

Introduction

- George Barnard

In statistical inference, as distinct from mathematical inference, there is a
world of difference between the two statements “X is true” and “X is known
to be true”.

+ “Correlation doesn’t imply Causation”.
+ Most of the Superstitions basically arose from some bad statistics (in many

cases, thinking association as cause, doing small sample inferences).
+ Causal inference tries to infer causal relationships from experimental or

observational data.
+ Connects statistical theory with the real world:

Classical statistics: models → inference.
Machine learning: data → prediction.
Causal inference: models and inference ↔ reality
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What is Causal Inference?

Motivating Example 1

By the mid-1940s,
it had been observed that lung cancer
cases had tripled over the previous three
decades. A series of observational studies
since 1950 reported overwhelmingly
strong association between smoking
and lung cancer. But ‘nature is tricky’ so
can we be sure the association is causal?
Some prominent statisticians including
R A Fisher objected to the idea that this
implies that smoking causes lung cancer,
but no compelling competing hypothesis
could be found. This led to one
of the biggest public health intervention
to reduce tobacco consumption.
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What is Causal Inference?

Motivating Example 2

Cambridge welcomes 68.7% of 2019 from maintained schools but falls far
below a national average of 93% of state educated students.
Some interesting quotes:“Considering 93% of pupils in England are taught in
state schools, a figure of 68.7% means that state school students are still
vastly underrepresented in the University.... Cambridge’s acceptance of
state school applicants continues to be amongst the lowest in the UK.”
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What is Causal Inference?

Motivating Example 2

So?
Does this mean Cambridge’s admission is biased against state schools?

Not necessarily!
For example, applicants from independent schools may have better A-level results.
Causal inference can be used to understand fairness in decisions made by human
or computer algorithms (Kusner and Loftus (2020)).
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What is Causal Inference?

Languages of Causal Inference

Causal inference ≈ Causal language/model + Statistical inference

There are three typical languages of Causal Inference.
1 Using Potential Outcomes/Counterfactuals
2 Using Structural Equation Modelling (SEM)
3 Using Graphs.

However, for today, we will mainly focus on Counterfactuals/Potential Outcomes.
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What is Causal Inference?
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Randomized Experiments

Randomized Experiments
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Randomized Experiments

What is Randomized Experiment?

Randomization involves randomly allocating the experimental units across the
treatment groups.
For example, randomly allocating placebo or treatment to patients (doesn’t
matter whether the patient agrees or not!)
Practically infeasible due to ethical issues.
But simple to start with, so let’s focus on randomized experiment for now!
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Randomized Experiments

Notations

For i th unit :
Covariates : Xi

Treatment : Ai ∈ A = {0, 1}. Ai = 1 means treated.
[n] = {1, · · · , n}, A[n] = (A1, · · · , An)

T , X[n] = (X1, · · · , Xn)
T

The assignment mechanism of the treatment is the conditional distribution
P (A[n] = a[n]|X[n] = x[n]) = π(a[n]|x[n]). Examples include : Bernoulli Trial,
Sample Without Replacement, Bernoulli Trials with Covariates etc.
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Randomized Experiments

An important treatment assignment mechanism

Pairwise Experiment
Suppose n is even. The units are divided into n/2 pairs based on the
covariates.
Within each pair, one unit is randomly assigned to treatment.
Let Bi = Bi(x[n]) be the pair that unit i is assigned to.

π(a[n]|x[n]) =
1

2n/2
1

(
n∑

i=1

ai.1(Bi = j) = 1 ∀j = 1, · · · , n/2

)
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Randomized Experiments

“Implicit” Causal Inference

To estimate the causal effect of A on Y , one may
Get the differences of the main effect estimates by fitting some
anova/regression.

Compare the conditional expectations E[Y |A = 0] with E[Y |A = 1].
Compare the conditional distributions P (Y ≤ y|A = 0) with
P (Y ≤ y|A = 1).
Further condition on X and compare E[Y |A = 0;X = x] with
E[Y |A = 1;X = x] or the conditional distributions.

This approach allows us to apply familiar statistical methodologies, but it has
several limitations :

Causal inference is only implicit and informal, as it seems that any difference
can only be reasonably attributed to the different treatment assignments.
Difficult to extend to non-iid treatment assignments.
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Randomized Experiments

Potential Outcomes

The potential outcome model avoids the above problems and provides a flexible
basis for causal inference. It is first introduced by Neyman in his 1923 Master’s
thesis (Splawa-Neyman et al. (1990)) to study randomised experiments and later
brought to observational studies by Rubin (Rubin (1974)).

This approach posits a potential outcome (or counterfactual), Yi(a[n]), for unit i
under treatment assignment a[n]. The potential outcomes (or counterfactuals) are
linked to the observed outcome (or factuals) via the following assumptions.
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Randomized Experiments

SUTVA (Stable Unit Treatment Value Assumption)

Assumption (Consistency)

Yi = Yi(A[n]) for all i ∈ [n].

Assumption (No Interference)

Yi(a[n]) = Yi(ai) for all i ∈ [n] and a[n] ∈ An

Because Ai is binary, we are only dealing with two potential outcomes, Yi(0) and
Yi(1), for each unit i.
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Randomized Experiments

Fundamental Problem of Causal Inference

The difference Yi(1)− Yi(0) is called the individual treatment effect for unit i,
which can never be observed. This is often referred to as the “fundamental
problem of causal inference” (Holland (1986)).

i Yi(0) Yi(1) Ai Yi

1 ? -3.7 1 -3.7
2 2.3 ? 0 2.3
3 ? 7.4 1 7.4
4 0.8 ? 0 0.8
...

...
...

...
...

However, it should be possible to estimate the treatment effect at the population
level if the treatment is randomised.
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Randomized Experiments

Average Treatment Effect and Estimation

Definition (ATE)
Sample Average Treatment Effect (SATE) = 1

n

∑n
i=1(Yi(1)− Yi(0))

Population Average Treatment Effect (PATE) = E(Yi(1)− Yi(0))

Note: PATE implicitly assumes that the n units are sampled from a super
population, so Yi(0) and Yi(1) follow an unknown bivariate probability
distribution.
Intuitively, it should be possible to estimate the treatment effect at the population
level if the treatment is randomised. This can be formalised by the following
assumption:

Assumption (Randomization)

A[n] ⊥ Y[n](a[n])|X[n] for a[n] ∈ An
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Randomized Experiments

Causal Identification

Theorem

Consider a Bernoulli trial with covariates, where {Xi, Ai, Yi(a), a ∈ A} are iid.
Suppose the previous assumptions hold and P (A = a|X = x) > 0, ∀a ∈ A, x.
Then for all a ∈ A and x,

(Y (a)|X = x)
d
= (Y |A = a,X = x) (1)

Proof.
P (Y (a) ≤ y|X = x) = P (Y (a) ≤ y|A = a,X = x) [By Assumption 3]
= P (Y ≤ y|X = x)[By Assumption 1]

Why P (A = a|X = x) > 0?
This means under each covariate level both treatments and controls exist (for the
sake of estimability of ATE under each covariate level)

D.Basu Presentation Srijan Chattopadhyay 20 / 74



Randomized Experiments

Causal Identification

Corollary
Under the same set of assumptions as Theorem 1,

ATE = E(Y (1)− Y (0)) = E(E(Y |A = 1, X = x)− E(Y |A = 0, X = x))) (2)

If P (A = 1|X) does not depend on X, then

ATE = E[Y |A = 1]− E[Y |A = 0] (3)

Proof.
First part is trivial. For Equation (3), we prove it in the case of discrete X. Since
A ⊥ X,P (X = x) = P (X = x|A = 1) = P (X = x|A = 0). By Theorem 1,
E(Y (1)) =

∑
x E(Y |A = 1, X = x)P (X = x)

=
∑

x E(Y |A = 1, X = x)P (X = x|A = 1) = E(Y |A = 1)
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Randomized Experiments

Why Causal Identification?

Results like Equation (1), (2), (3) are called causal identification, because they
equate a counterfactual quantity on the left hand side with a factual (so
estimable) quantity on the right hand side under a restrictive environment.
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Randomized Experiments

Causal Effect Estimator

The most intuitive estimator of ATE is β̂ = Ȳ1 − Ȳ0, where Ȳ1 =
∑n

i=1 YiAi∑n
i=1 Ai

,
Ȳ0 =

∑n
i=1 Yi(1−Ai)∑n
i=1(1−Ai)

Theorem
Under the previous assumptions and if Ai are sampled without replacement,
E(β̂|Y (0), Y (1)) = SATE

V (β̂|Y (0), Y (1)) =
S2
0

n0
+

S2
1

n1
− S2

01

n , where S2
a =

∑n
i=1(Yi(a)− ¯Y (a))2

n−1 ,
S2
01 =

∑n
i=1(Yi(1)−Yi(0)−SATE)2

n−1

Estimation of V
Note that, S01 can’t be estimated due to fundamental problem of causal
inference. So, it is common to estimate V by Ŝ0

2

n0
+ Ŝ1

2

n1
, where

Ŝ1
2
=

∑n1
i=1 Ai(Yi−Ȳ1)

2

n1−1 . Thus we get a conservative estimate of the variance.
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Randomized Experiments

Testing no Causal Effect

Fisher (Edwards (2005)) appears to be the first to grasp fully the importance of
randomization for credible causal inference (Imbens and Rubin (2015)). Fisher
considered testing the sharp null hypothesis (or exact null hypothesis)

H0 : Yi(0) = Yi(1), ∀i ∈ [n]

Using H0, we can impute all the missing values in the previous table.

i Yi(0) Yi(1) Ai Yi

1 -3.7 -3.7 1 -3.7
2 2.3 2.3 0 2.3
3 7.4 7.4 1 7.4
4 0.8 0.8 0 0.8

Then under the distribution π, simulate various A[n] and get all possible values of
β̂. Fisher proposed to test H0 based on how extreme the observed β̂ is compared
to other potential values of β̂.
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Randomized Experiments

An Example!

Under sampling without replacement, the following 6 scenarios are equally likely :
1 A[4] = (1, 1, 0, 0), β̂ = −4.8

2 A[4] = (1, 0, 1, 0), β̂ = 0.3

3 A[4] = (1, 0, 0, 1), β̂ = −6.3

4 A[4] = (0, 1, 1, 0), β̂ = 6.3

5 A[4] = (0, 1, 0, 1), β̂ = −0.3

6 A[4] = (0, 0, 1, 1), β̂ = 4.8

The observed realization is the second.
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Randomized Experiments

A More General Set up!

H0 : Yi(1)− Yi(0) = β; ∀i ∈ [n]. This is still a very strong hypothesis: it says the
individual treatment effect is always a fixed value β. Using the consistency
assumption and H0, we can impute :

Yi(a) =


Yi if a = Ai,

Yi + β if a > Ai,

Yi − β if a < Ai
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Randomized Experiments

What Next?

Then we choose a test statistic T (A[n], X[n], Y[n]). An example is the
difference-in-means estimator β̂.
Then, just test using the empirical distribution obtained by the randomzation.
It turns out that it is indeed a level α test.
Can take T = |β̂|√

var(β̂)
, or T =

∑
1(Ai > Aj)1(Yi > Yj) etc.

D.Basu Presentation Srijan Chattopadhyay 27 / 74



No Unmeasured Confounders : Randomization Inference
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No Unmeasured Confounders : Randomization Inference

What Next?

In practical, we almost never get data which was collected through some
randomized experiment due to potential ethical issues.

So, it is important to know how can we actually make “good causal
inference” in the real world?
Most data in the real world comes from some observational study!
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No Unmeasured Confounders : Randomization Inference

What is Observational Study?

An observational study draws inferences from a sample to a population where
the independent variable is not under the control of the researcher because of
ethical concerns or logistical constraints.
This is in contrast with experiments, such as randomized controlled trials,
where each subject is randomly assigned to a treated group or a control
group.
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No Unmeasured Confounders : Randomization Inference

Importance of the Design

Causal inference ≈ Causal language/model + Statistical inference.
Consider the following two situations.

1 Situation 1: Suppose we let half of the patients to receive the treatment at
random. Significantly more treated participants have a better outcome.
Therefore, the treatment must be beneficial.

2 Situation 2: Suppose the observed patients are pair matched, so that the
patients in the same pair have similar demographics and medical history. In
significantly more pairs, the treated patient has a better outcome. Therefore,
the treatment must be beneficial.

Apart from statistical error and causality, a third possible explanation in Situation
2 is that the treated patients and the control patients are systematically different
in some other way (eg, different lifestyles). So causal inference in observational
studies is always abductive (inference to the best explanation).

Causal estimator - True causal effect = Design bias + Modelling bias + Statistical
noise
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No Unmeasured Confounders : Randomization Inference

No Unmeasured Confounders

We will assume all relevant confounders are measured.
Let Ai ∈ {0, 1}; be a binary treatment for individual i, Yi be its the outcome
of interest with two counterfactuals Yi(0) and Yi(1), and Xi be a
p-dimensional vector of covariates.
We assume (Xi, Ai, Yi(0), Yi(1)), i = 1, · · · , n, are i.i.d.
In other words, we eliminate one of the possible explanations to observed
associations by assumption. This is convenient for studying statistical
methodologies but obviously optimistic for practical applications.
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No Unmeasured Confounders : Randomization Inference

Matching Algorithms

Matching is a popular observational study design. Matching is essentially a
preprocessing algorithm that aims to reconstruct a pairwise randomised
experiment or a stratified randomised experiment from observational
data.
To simplify the exposition, we will assume Ai = 1 for 1 ≤ i ≤ n1 and Ai = 0
for n1 + 1 ≤ i ≤ n.
An essential element is a measure of distance d(., .) between two values of
the covariates X.
Following are 2 examples of distances.
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No Unmeasured Confounders : Randomization Inference

Mahalanobis Distance

dMA(Xi, Xj) = (Xi −Xj)
T Σ̂−1(Xi −Xj)

where

Σ̂ =
1

n
[

n1∑
i=1

(Xi − X̄1)(Xi − X̄1)
T +

n∑
i=n1+1

(Xi − X̄0)(Xi − X̄0)
T ]

where X̄1 and X̄0 are the treatment and control sample means.
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Propensity Score based Distance

Propensity score is defined as π(x) = P (A = 1|X = x). It has been particularly
famous in the recent years in Causal Modelling (Rosenbaum (2023)). The
propensity score can be estimated from the observational data, commonly by
fitting a logistic regression of Ai on Xi.

dPS(Xi, Xj) =

[
log
(

π̂(Xi)

1− π̂(Xi)

)
− log

(
π̂(Xj)

1− π̂(Xj)

)]2
Sometimes, Mahalanobis distance with a propensity score caliper is used.

d(Xi, Xj) =

{
dMA(Xi, Xj), if dPS(Xi, Xj) < τ2

∞, Otherwise

where τ is treated as a tuning parameter.

D.Basu Presentation Srijan Chattopadhyay 35 / 74



No Unmeasured Confounders : Randomization Inference

Nearest-Neighbour Matching

Given the distance measure d, this naive method matches a treated
observation 1 ≤ i ≤ n1 with its nearest control observation.
The problem with this method is that one control individual could be
matched to several treated individuals, which never happens in a pairwise
randomised experiment.
We can fix this problem by a greedy algorithm that sequentially matches a
treated i to its nearest control neighbor that has yet been selected. A
drawback is that the result will then depend on the order of the input.
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Optimal Matching

An improvement is the optimal matching that solves the following optimisation
problem:

minimize
n1∑
i=1

d(Xi,

n∑
j=n1+1

MijXj)

subject to Mij ∈ {0, 1} ∀1 ≤ i ≤ n1, ∀n1 + 1 ≤ j ≤ n
n0∑
j=1

Mij = 1, ∀1 ≤ i ≤ n1

n1∑
i=1

Mij ≤ 1, ∀n1 + 1 ≤ j ≤ n
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Optimal Matching

Mij is an indicator for the treated observation i being matched to the control
observation j.
The last two constraints mean that every treated is matched to exactly one
control and every control is matched to at most one treated.
Although combinatorial optimisation is generally NP-complete, the optimal
matching problem can be recasted as a network flow problem and solved
efficiently in polynomial time. (Rosenbaum (2020))
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Checking Covariate Balance
We can assess whether the matching is satisfactory by checking covariate
balance.

A common measure of covariate imbalance is the standardised covariate
differences (Rosenbaum and Rubin (1985))

Bk(M) =
1
n1

∑n1

i=1(Xik −
∑n

j=n1+1 MijXik)√
(s21k + s20k)/2

, k = 1, · · · , p

A rule of thumb is that the k-th covariate Xk is considered approximately
balanced if |Bk| < 0.1 , but obviously we would like the entire vector B to be
as close to 0 as possible.
If the covariate balance is unsatisfactory, a common practice is to rerun the
matching algorithm with a different distance measure or remove treated units
that have extreme propensity scores. This is often called the propensity
score tautology(Imai et al. (2008)).
In modern optimal matching algorithms, it is possible to include
|Bk(M)| ≤ η; for all k as a constraint in the combinatorial optimisation
problem.
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Estimation

For simplicity, we assume treated observation i is matched to control observation
i+ n1, i = 1, · · · , n1. Let Di = (Ai −Ai+n1)(Yi − Yi+n1) be the
treated-minus-control difference in pair i. Can consider

D̄ =
1

n1

n1∑
i=1

Di

D.Basu Presentation Srijan Chattopadhyay 40 / 74



No Unmeasured Confounders : Randomization Inference

Randomization Inference

Assumption
We assume matching reconstructs a pairwise randomised experiment, so

P (A[2n1] = a|C[2n1], A[2n1] ∈ M) = 2−n1 .1(a ∈ M)

Consider the sharp null hypothesis H0 : Yi(1)− Yi(0) = β, ∀i, where β is given.
Under H0 and by the consistency assumption, the counterfactual values of D[n1]

can be imputed as

Di(a[2n1]) = (ai−ai+n1)(Yi(ai)−Yi+n1(ai+n1)) =

{
Di, ai = 1, ai+n1

= 0,

2β −Di, ai = 0, ai+n1
= 1
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Randomization Inference

Consider any test statistic T = T (D[n1]). Next we construct a randomisation test
based on the randomisation distribution of T (D[n1](A[2n1])). Let F (t) denote its
cumulative distribution function given C[2n1] and A[2n1] ∈ M under H0,

F (t) = P (T ≤ t|C[2n1], A[2n1] ∈ M)

=
∑

a[2n1]∈M

(
1

2

)n1

.1(T ≤ t)

We then compute the p-value for this randomisation test as P2 = F (T ) and reject
the hypothesis H0 if P2 is less than a significance threshold 0 < α < 1.

Theorem
P (P2 ≤ α) ≤ α under H0 for all 0 ≤ α ≤ 1.
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A Motivating Example! I

Suppose that we are interested in giving teenagers interesting math and stat
topics to read to discourage them from smoking. A random subset of 5% of
teenagers in Baranagar, and a random subset of 20% of teenagers in Kharagpur
are eligible for the study.

Baranagar Kharagpur
Non-S. Smoker Non-S. Smoker

Treat. 152 5 581 350
Control 2362 122 2278 1979

Baranagar + Kharagpur
Non-Smoker Smoker

Treatment 733 355
Control 4640 2101

Within each city, we have a randomized controlled study, and in fact readily
see that the treatment helps.
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A Motivating Example! II

τ̂B = 5
5+152 − 122

122+2362 = −1.7%
τ̂K = 350

350+581 − 1979
1979+2278 = −8.9%

τ̂B+K = 355
355+733 − 2101

2101+4640 = 0.01%
However, looking at aggregate data is misleading, and it looks like the
treatment hurts.
Once we aggregate the data, this is no longer an RCT because Kharagpur
people are both more likely to get treated, and more likely to smoke whether
or not they get treated.
In order to get a consistent estimate of the ATE, we need to estimate
treatment effects in each city separately.
τ̂ = 2641

2641+5188 τ̂B + 5188
2641+5188 τ̂K = −6.5%
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Aggregating difference-in-means estimators

τ̂AGG =
∑
x∈χ

nx

n
τ̂(x)

where
τ̂(x) =

1

nx1

∑
Xi=x,Ai=1

Yi −
1

nx0

∑
Xi=x,Ai=0

Yi

Theorem
√
n(τ̂AGG − τ)

D→ N(0, VAGG), where VAGG = V (τ(Xi)) + E
(

σ2(Xi)
π(Xi)(1−π(Xi))

)
,

and σ2(x) = V (Y (1)|X = x) = V (Y (0)|X = x) [Remarkably, the asymptotic
variance VAGG does not depend on |χ| = p]

But....
What to do in case of continuous X? because we won’t be able to get enough
samples for each possible value of x ∈ χ to be able to get a reasonable estimate of
τ(x).
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Propensity stratification

1 Sort the observations according to their propensity scores.
2 Split the sample into J evenly size strata using the sorted propensity score

and, in each stratum j = 1, 2, · · · , J , compute the simple difference in-means
treatment effect estimator for the stratum

τ̂j =

∑[jn/J]
j=[(j−1)n/J]+1 AiYi∑[jn/J]
j=[(j−1)n/J]+1 Ai

−
∑[jn/J]

j=[(j−1)n/J]+1(1−Ai)Yi∑[jn/J]
j=[(j−1)n/J]+1(1−Ai)

3 Estimate the average treatment by

τ̂STRATA =
1

J

J∑
i=1

τ̂j
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Outcome Regression

τ̂OR =
1

n

n∑
i=1

(µ̂1(Xi)− µ̂0(Xi))

where µ̂i is estimated via OLS or some nonparametric regression between Y and
X1, · · · , Xp differently for A = 0 and A = 1.

Note
Whether or not the true effect function µw(x) is linear, OLS always reduces the
asymptotic variance of difference in means estimator (Little (2019)).A worst case
for OLS is when β(1) = β(0) = 0, i.e., when OLS asymptotically just does nothing,
then τ̂OR reduces to Difference in means estimator.
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Inverse-propensity weighting (IPW)

Another, algorithmically simpler way of exploiting unconfoundedness is via
inverse-propensity weighting.

τ̂IPW =
1

n

n∑
i=1

(
AiYi

π̂(Xi)
− (1−Ai)Yi

1− π̂(Xi)

)
where π̂(x) is estimated via non-parametric regression or some other way.

Note
We see that the performance of the oracle IPW estimator (i.e. IPW with the true
π(x) value) is somewhat disappointing when compared to τ̂AGG in discrete case.
Despite having access to the true propensity score π(x), it always under-performs
τ̂AGG. But it can be proved that it is consistent for τ [proved by using the oracle
IPW].
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Augmented IPW I

Given that the average treatment effect can be estimated in two different
ways, i.e., by first non-parametrically estimating π(x) or by first estimating
µ̂(0)(x) and µ̂(1)(x), it is natural to ask whether it is possible to combine
both strategies.
This turns out to be a very good idea, and yields the augmented IPW
(AIPW), also called Doubly Robust estimator.

τ̂AIPW =
1

n

n∑
i=1

(µ̂(1)(Xi)− µ̂(0)(Xi) +Ai

Yi − µ̂(1)(x)

π̂(Xi)

− (1−Ai)
Yi − µ̂(0)(x)

1− π̂(Xi)
)
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Augmented IPW II

Note
AIPW is consistent if either the µ̂ are consistent or π̂ is consistent. Furthermore,
one might also argue that, in a modern statistical setting, one should expect
practitioners to appropriate non-parametric estimators for both µ(w)(x) and π(x)
such that both are consistent; in which case both τ̂OR and τ̂IPW would already be
consistent on their own, and so the above double robustness statement (namely
consistency of τ̂AIPW ) doesn’t buy us much. However, if both the models are
consistent, then we get asymptotic normality of τ̂AIPW .
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Augmented IPW III

Note
Sometimes, a Cross fitting estimator is used to avoid idiosyncrasies of the
specific model adjustment we chose to use. Cross-fitting first splits the data (at
random) into two halves I1 and I2, and then uses an estimator which uses the
model trained in I2 to predict that of I1 and vice versa and take an weighted
average of these two. Under some mild model accuracy conditions, it corrects bias
due to overfitting and works better than the usual one and gives asymptotic
normality as well.

Note
Sometimes jack-knife type or k-fold estimates are also used.
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Simulation Studies

Let’s work with simulated examples now!

We generate 1000 samples (Y,A,X1, X2, X3, X4, X5).
X1 ∼ N(3, 1), X2 ∼ N(5, 4), X3 ∼ t5, X4 ∼ Ber(0.3), X5 ∼ Pois(2). We
scale all the variables.

1 Situation 1: Ai ∼ Ber(pi), where pi =
eηi

1+eηi
, where

ηi = X1,i + 5X2,i + 6X3,i + 2X4,i + 3X5,i +N(0, 1)
2 Situation 2: Randomly assign n/2 people to A = 1.
3 Situation 3: Ai

iid∼ Ber(0.5)
4 Situation 4: Ai ∼ Ber(pi), where pi =

eηi

1+eηi
, where

ηi = X2
1,i + 5X2,i + 6X3,i + 2X2

4,i + 3X5,i +N(0, 1)

Yi = (3 + 9X1,i + 3X2,i + 8X3,i + 4X4,i + 5X5,i +N(0, 1/4))1(Ai =
1) + (X1,i + 2X2,i +X3,i + 2X4,i + 4X5,i +N(0, 1/4))1(Ai = 0)

Repeat the whole process 100 times, i.e. generate 100 such multivariate
samples.
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Simulation Studies

Comparing the estimates (Bernoulli With linearly mixed
Covariates)
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Comparing the estimates (Assigning to n/2 people)

D.Basu Presentation Srijan Chattopadhyay 56 / 74



Simulation Studies

Comparing the estimates (Bernoulli (0.5))
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Simulation Studies

Comparing the estimates (Bernoulli With non-linearly
mixed Covariates)
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Simulation Studies

Comparing the estimates (Bernoulli With linearly mixed
Covariates, but for various n)
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Simulation Studies

Comparing the estimates (Bernoulli With linearly mixed
Covariates, but for various n)

D.Basu Presentation Srijan Chattopadhyay 60 / 74



Unmeasured confounders: A Brief Discussion!

Unmeasured confounders: A Brief Discussion!

D.Basu Presentation Srijan Chattopadhyay 61 / 74



Unmeasured confounders: A Brief Discussion!

Roadmap I

No unmeasured confounders is a rather optimistic assumption in practice.
So the question is, does a limited violation of this assumption render our
statistical analysis useless?
For that we should do some sensitivity analysis or re-modeling to validate the
outcomes.
We will brifely discuss some of the important ones here.

Rosenbaum (1987) proposed a sensitivity analysis which is a randomisation
inference for matched observational studies. It specifies a family of
distributions for the full data of all the relevant factuals and counterfactuals,
where η is a sensitivity parameter, then test the null hypothesis η = 0.
Robins (1999) estimates the design bias using estimated propensity score.
We can then estimate the ATE by β̂ − ˆbias.
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Roadmap II

“Instrumental Variable Regression” was invented to estimate the price
elasticities of (the causal effects of price on) demand and supply (Stock and
Trebbi (2003)). This is a challenging problem because price is determined
simultaneously by demand and supply. To estimate the causal effect of price
on supply, we cannot use observational data that correspond to different
demand and supply curves. Instead, we need to use “exogenous” events that
change the demand but not the supply. For example, we can use the
COVID-19 outbreak as an instrumental variable for the demand of masks.
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A different Causal Inference : Measuring Directional Dependence

Blöbaum et al. (2019) addresses the problem of inferring the causal direction
between two variables by comparing the least-squares errors of the predictions
in both possible directions. They have considered only a unconfounded
situation.
Their main idea was to simply compare the MSE of regressing Y on X and
the MSE of regressing X on Y. It is somewhat similar to the Structural
Equation Modeling approach (where a linear relationship between the
variables are assumed).
It is very natural to assume that E[(E − E(E|C))2] ≤ E[(C − E(C|E))2], or,
equivalently, E(V ar(E|C)) ≤ E(V ar(C|E)) where C is the Actual Cause
and E is the Effect.
Define ϕ(c) = E(E|c) and Noise variable N = E − ϕ(C) and to study the
limit of an almost deterministic relation in a mathematically precise way, they
considered a family of effect variables Eα by Eα = ϕ(C) + αN , where
α ∈ R+ is a parameter controlling the noise level.
They showed under some assumptions, lim

α→0

E(V ar(C|E′
α)

E(V ar(E′
α|C) ≥ 1, where E′

α is the
rescaled and centered version of Eα. Based on this result, they propose the
following algorithm.
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A different Causal Inference : Measuring Directional Dependence

Algorithm 1
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A different Causal Inference : Measuring Directional Dependence

Algorithm 2
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A different Causal Inference : Measuring Directional Dependence

A Modified Approach

Pascual-Marqui et al. (2024) uses Chatterjee’s Correlation (Chatterjee
(2021)) and uses the same type of algorithm as of Blöbaum et al. (2019) to
infer the directional causal relation.
Consider (x(1), y(1)), · · · , (x(N), y(N)) and ri be the rank of y(i). Then,
Ch[y = f(x)] = 1− 3

∑N−1
k=1 |rk+1−rk|

N2−1 is also interpreted as a measure of how
well “y is predicted by x”.
Then they define ∆(x → y) = Ch[y = f(x)]− Ch[x = g(y)]. We say X
causes Y if ∆(x → y) > 0 and Y causes X if ∆(x → y) < 0.
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A different Causal Inference : Measuring Directional Dependence

More on Causal Inference I

Yao et al. (2021) talks about relaxing the crucial assumptions like SUTVA,
Unconfoundedness, and Positivity etc.
Unconfoundedness assumption is not testable in practice. Kallus et al. (2018)
suggests to combine the experimental data and observational data together
which makes strictly weaker assumptions than existing approaches. D’Amour
et al. (2021) argues that the positivity assumption is a strong assumption and
is more difficult to be satisfied in the high-dimensional datasets.
Dawid (2000) criticizes the counterfactual approach due to unverifiable
assumptions and proposes a bayesian decision analytic approach for causal
inference. The principal difficulty with the counterfactual approach is that
the desired inference depends on the joint probability structure of the
complementary variables (Y0, Y1). However, at a time only one is observable.
Dawid (2000) claims that by using bayesian decision analytic approach, this
problem somewhat becomes negligible.

D.Basu Presentation Srijan Chattopadhyay 69 / 74



A different Causal Inference : Measuring Directional Dependence

More on Causal Inference II

Guo et al. (1906) applies Graph Convolutional Networks into a causal
inference model is an approach to handle the network data as independence
assumption is not applicable to network data.
Causal inference has been discovered for time series data (Runge et al.
(2023)), spatial data (Akbari et al. (2023)) as well.
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Thank You!!
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