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Introduction

Why RMT?

Most of the traditional Multivariate statistical method assumes the data
dimension p to be fixed or not too large compared to the number of data
points.
In the modern era most of the datasets from Genomics, Finance, Signal, and
Image Processing violate that assumption.
So it is challenging to apply those traditional statistical methods.
Also many traditional methods become very demanding regarding necessary
assumptions for the method to work nicely for high-dimensional datasets.
In modern datasets often those assumptions are not satisfied.
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Introduction

Why RMT?

Consistency of the Sample PCs

Let X1, · · · , Xn
iid∼ Np(0,Σ) where Σ is positive definite with all distinct

eigenvalues λ1 > · · ·λp > 0. Let ln,1 ⩾ · · · ⩾ ln,p be the eigenvalues of
1
n

∑n
i=1XiX

T
i and Λ = diag(λ1, · · · , λp). Then

√
n(ln − λ)

L−→ Np(0, 2Λ
2) (1)

as n→ ∞ where ln =

ln,1...
ln,p

 and λ =

λ1...
λp


For example, when the eigenvalues of the population covariance matrix are
distinct, the sample PCs are consistent.
But the assumption of distinct eigenvalues is not often satisfied for verbal
audio data used for speech recognition or noisy signals.
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Introduction

Why RMT - An Illustration through Spiked Covariance
Model

For those cases, the covariance matrix is in the form

Σ =
M∑
j=1

λjθjθ
∗
j + σ2Ip

having M leading significant eigenvalues to be distinct and rest all the
same: (λ1 + σ2) > · · · > (λM + σ2) > σ2 = · · · = σ2

For the above model if
γ = limn→∞

p
n
∈ (0,∞)

an eigenvalue ℓj ⩽ 1 +
√
γ with arithmetic multiplicity 1

then the angle between then the angle between the j−th sample and
population eigenvectors converges to π

2 almost surely.
This essentially shows to which extent the sample principal components can
be inconsistent for these models.
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Introduction

Why RMT

Figure: p = 50, n = 200 and eigenvalues of the covariance matrix are ℓ1 = 2.5, ℓ2 = 1.5,
ℓj = 1 for j = 3, . . . , p. Blue dots correspond to the population eigenvalues. Black
circles correspond to the sample eigenvalues (based on i.i.d. Gaussian samples) for 50
replicates. Solid red circles indicate the theoretical limits of the first two eigenvalues for
γ = p/n = 0.25.
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Introduction

Why RMT?

RMT provides a unified framework
to work on such problems.
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Theoretical Framework
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Theoretical Framework

How to study Large Random Matrices

In most cases, random matrices are studied in terms of their spectrum.
For a random matrix X with eigenvalues λ1, · · · , λn its Empirical Spectral
Distribution (ESD) denotes the uniform distribution on λ1, · · · , λn.
So for a random matrix X its ESD is a random measure taking value in R∗

(set of all probability measures on R).
If X is real symmetric, one can write the empirical distribution function
FX(t) as

FX(t) =
1

n

n∑
i=1

1(λj ⩽ t), t ∈ R

If n→ ∞, the limit of this distribution (if exists) is called Limiting Spectral
Distribution(LSD).
For many special random matrices, the LSD turns out to be a deterministic
measure !!!
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Theoretical Framework

Two famous Random Matrices - Wishart and F−type
Matrix

If X1, · · · , Xn
iid∼ Np(0,Σ), and X = [X1 : · · · : Xn], then the distribution of

XXT is called Wishart distribution with parameter �, degree of freedom n and
dimension p and abbreviated as Wp(Σ,m)

If A ∼Wp(Σ,m) and B ∼Wp(Σ, n) and A,B independent then the
distribution of B−1/2AB−1/2 is called F (p,m, n)
If the data X1, · · · , Xn

iid∼ Np(0,Σ), and S = 1
n

∑n
i=1(Xi −X)(Xi −X)T is

the sample covariance matrix, then nS ∼Wp(Σ, n− 1).
This makes these two distributions very frequently occur in many statistical
problems such as inference on covariance matrix, PCA, MANOVA,
High-dimensional Linear Models, High-dimensional Factor Models, Signal
estimation from a noisy data, etc.
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Theoretical Framework

Study of the Spectrum

Figure: Asymptotic Properties of the Spectrum of Large Wishart and F−type matrices
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Theoretical Framework

Function of the Spectrum

Let Xn ∼Wp(Σ, n) where n ⩾ p. Let λ(n)1 , · · · , λ(n)p be the eigenvalues of Xn

and λ1, · · · , λp be the eigenvalues of Σ. Then,

sup
x∈R

∣∣∣∣∣P
(√

n

2p

(
p∑

i=1

log
(
λ
(n)
i

λi

)
−

p∑
i=1

log (n− p+ i)

)
⩽ x

)
− Φ(x)

∣∣∣∣∣ = O

(
p√
n

)
where Φ(x) denotes the Standard Normal CDF.

So when p√
n
→ 0, then

√
n

2p

(
p∑

i=1

log
(
λ
(n)
i

λi

)
−

p∑
i=1

log (n− p+ i)

)
L−→ N(0, 1) (2)
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Theoretical Framework

Behaviour of the bulk Spectrum for Wishart Matrices

X ∈ Rp×n with i.i.d. real- or complex-valued entries with mean 0 and
variance 1.
lim

n→∞
p
n = γ ∈ (0,∞)

Then as n→ ∞ as ESD of S = 1
nXXT converges to law Fγ .

If γ ∈ (0, 1], then Fγ has the p.d.f.:

fγ(x) =

√
(b+(γ)− x)(x− b−(γ))

2πγx
, b−(γ) ≤ x ≤ b+(γ), (3)

where
b±(γ) = (1±√

γ)
2
.

For x outside this interval, fγ(x) = 0.
If γ ∈ (1,∞), then Fγ is a mixture of a point mass at 0 and the p.d.f.
f1/γ(x), with weights 1− 1/γ and 1/γ, respectively.
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Theoretical Framework

Marcenko-Pastur Law

Figure: Marčenko–Pastur density functions for γ = 0.1,0.25,0.5,1
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Theoretical Framework

Marcenko Pastur Law for γ = 0

For γ = 0, the ESD of Sp = 1
2
√
np

(
XXT − nIp

)
converges almost surely in

distribution to semi-circular distribution, having the pdf

f(x) =
1

2π

√
4− x2, −2 ≤ x ≤ 2 (4)
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Theoretical Framework

Behavior at the edge of Spectrum: Wishart Matrix

X is a p× n matrix with i.i.d. real-valued entries with mean 0 and variance
σ2 and finite fourth moment.
If γ ∈ (0,∞), λmax(

1
nXXT ) → (1 +

√
γ)2σ2 a.s.

If γ ∈ (0, 1), λmin(
1
nXXT ) → (1−√

γ)2σ2 a.s.

Tracy Widom Law

If γ ∈ (0,∞), Xi,j
i.i.d.∼ N(0, 1) then

l1 − µn,p

σn,p

L−→ W1 ∼ F1

F1 CDF of Tracy-Widom Distribution.
µn,p =

(√
n− 1 +

√
p
)2

σn,p =
(√

n− 1 +
√
p
) (

1√
n−1

+ 1√
p

)1/3
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Theoretical Framework

Tracy Widom Distribution
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Theoretical Framework

Asymptotic properties of spectrum of F− type matrices

Behaviour of Bulk Spectrum

F = SmS−1
n with Sm, Sn independent sample covariance matrix

data dimension p, sample sizes m,n, data has mean 0, variance 1 and
p
m → γ ∈ (0,∞), p

n → γ′ ∈ (0, 1)

Then LSD of F exists and has the pdf

fγ,γ′(x) =
(1− γ′)

√
(b− x)(x− a)

2πx(γ + xγ′)
1(a < x < b)

Behaviour at the edge of the spectrum

Under the same set of assumptions, a normalized version of λ1(F)
(highest eigenvalue) goes in distribution to Tracy-Widom Distribution.
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Theoretical Framework

Maximum eigenvalue of an F−type matrix

γ, γ′ ∈ (0, 1), m̆ = max{m, p}, n̆ = min{n,m+ n− p}, p̆ = min{m, p}

sin2
(γ
2

)
=

min{p̆, n̆} − 1
2

m̆+ n̆− 1
, sin2

(
ψ

2

)
=

max{p̆, n̆} − 1
2

m̆+ n̆− 1

µJ,p = tan2

(
γ + ψ

2

)

σ3
J,p =

16µ3
J,p

(m̆+ n̆− 1)2
· 1

sin(γ) sin(ψ) sin2(γ + ψ)

Then,

lim
p→∞

P

(
n̆
m̆λ1 − µJ,p

σJ,p
⩽ s

)
= F1(s)

F (·) CDF of Tracy-Widom Distribution.

MVA Presentation : Group D Indian Statistical Institute, Kolkata December 2, 2024 20 / 68



Theoretical Framework

Summary

Figure: Asymptotic Properties of the Spectrum of Large Wishart and F−type matrices
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Inference on Covariance Matrices

Inference on Covariance Matrices
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Inference on Covariance Matrices

One Sample Testing for Covariance Matrix

For X1, · · · , Xn
iid∼ Np(µ,Σ) where µ,Σ are unknown.

p, n are both large and p ∼ n
1
2−ϵ, ϵ > 0

Consider the testing problem with a two-sided alternative,

H0 : Σ = Σ0

H1 : Σ ̸= Σ0

ϕ(X) = 1
(√

n− 1

2p

∣∣∣∣∣
p∑

i=1

log
(
λ̂i
λi

)
−

p∑
i=1

log(n− p+ i)

∣∣∣∣∣ > zα/2

)
is an asymptotic size α test.
λ̂1, · · · , λ̂p are the eigenvalues of the sample covariance matrix.
λ1, · · · , λp are the eigenvalues of Σ0
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Inference on Covariance Matrices

Test for High-dimensional Linear Model

Consider the multivariate Linear Regression model,

Y = XB + E

Y = [Y1 : · · · : Ym] ∈ Rn×m is the response matrix consisting n observations
for each of the m response variable.
X ∈ Rn×p is the design matrix where p is the number of covariates.
E denotes the error matrix, E ∼ NDM(0,Σ) i.e. rows of E are iid from
N(0, �).
Consider the testing problem with a two-sided alternative,

H0 : Σ = Σ0

H1 : Σ ̸= Σ0
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Inference on Covariance Matrices

Test for High-dimensional Linear Model

Under H0, SSE=YT (I − PX)Y ∼Wm(Σ0, n− r), r = ρ(X).
An asymptotically level α test for H0 is given by

ϕR := 1
(√

n− r

2m

∣∣∣∣∣
m∑
i=1

log
(
λ̂i
λi

)
−

m∑
i=1

log(n− r − k + i)

∣∣∣∣∣ > zα/2

)

λ̂1, · · · , λ̂p are the eigenvalues of SSE = YT (I − PX)Y
λ1, · · · , λp are the eigenvalues of Σ0
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Inference on Covariance Matrices

Two Sample Test

X1, · · · , Xm
iid∼ Np(µ1,Σ1), Y1, · · · , Yn iid∼ Np(µ2,Σ2), µ1, µ2,Σ1,Σ2

unknown
n ≡ n(m) satisfies limm→∞

n
m = c ∈ (0,∞).

Consider the testing problem,

H0 : Σ1 = Σ2

H1 : Σ1 ̸= Σ2

An asymptotically level α test is,

ϕ(X,Y) := 1
(√

m

2p
(
1 + 1

c

) ∣∣∣∣∣
p∑

i=1

log
(
λ̂i

λ̂∗i

)
−

p∑
i=1

log
(
n− p+ i

m− p+ i

)∣∣∣∣∣ > zα/2

)

λ̂1, · · · , λ̂p are the eigenvalues of Sx

λ̂∗1, · · · , λ̂∗p are the eigenvalues of SY
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Inference on Covariance Matrices

Two Sample Test

The same test can be done using the asymptotic theory of the largest root of
F−type matrices as well.
Consider,

ϕF := 1
(

n̆
m̆λ1 − µJ,p

σJ,p
> F−1

1 (1− α)

)
where F1(·) CDF of Tracy-Widom Distribution.
The center and scale parameters are a function of the sample sizes under H0.
λ1 is the largest root of (

(n− 1)SY
)−1(

(m− 1)SX
)
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Inference on Covariance Matrices

Wald Test for High Dimensional Regression

Consider the multivariate Linear Regression model,

Y = XB + E

Y ∈ Rn×m,X ∈ Rn×p, ρ(X) = p,E ∼ NDM(0,Σ)

Consider the wald’s testing problem

H0 : LTB = B0

H1 : LTB ̸= B0

L ∈ Rp×k, ρ(L) = k.
OLS estimate for B is given by B̂ = (XTX)−1XTY
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Inference on Covariance Matrices

Wald Test for High Dimensional Regression

under H0,

Ap := (LTB̂ − B0)
T(LT(XTX)−1L)−1(LTB̂ − B0)

Ho∼ Wm(Σ, k)

Bp = YT(I − PX)Y ∼Wm(Σ, n− p) and is independent with Ap.
Then using the maximum eigenvalue of A−1

p Bp one can find an asymptotic
size α test.
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Application in PCA

Application in PCA
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Application in PCA

Spike Covariance Model

Σ =
∑M

j=1 λjθjθ
∗
j + σ2Ip

θ1, ..., θM are orthonormal; λ1 ≥ ... ≥ λM > 0 and σ2 > 0.
Σ has eigenvalues λ1 + σ2, · · · , λM + σ2, σ2, · · · , σ2

This model arises when the data has noise i.e. in verbal audio data, noisy
signal, or in Factor Models.
For the sake of simplicity σ2 can be taken to be 1.
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Application in PCA

PCA For Spike Covariance Model

X1, · · · , Xn
iid∼ Np(0,Σ) where Σ is a p× p positive definite matrix.

Σ has eigenvalues ℓ1 ≥ · · · ≥ ℓM > 1 = · · · = 1.
S = 1

n

∑n
i=1XiX

T
i has eigenvalues ℓ̂1 ≥ · · · ≥ ℓ̂p.

p, n→ ∞ such that p
n − γ = o(n−1/2) for a γ ∈ (0,∞).

For a fixed j ∈ {1, 2, · · · ,M} if ℓj > 1 +
√
γ, then

√
n

(
ℓ̂j − ℓj

(
1 +

γ

ℓj − 1

))
L−→ N(0, σ2(ℓj))

σ2(ℓ) := 2ℓ2
(
1− γ

(ℓ−1)2

)

MVA Presentation : Group D Indian Statistical Institute, Kolkata December 2, 2024 32 / 68



Detecting Number of Signals

Detecting Number of Signals
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Detecting Number of Signals

The Setup

We observe n i.i.d p−dimensional observations {xi}ni=1 from the model,

x(t) = As(t) + σn(t)

at the time points t1, · · · , tn.

x(t1) =

X1(t1)
...

Xp(t1)

 , · · · , x(tn) =
X1(tn)

...
Xp(tn)


A = [a1, . . . , aK ] ∈ Rp×K have linearly independent columns.

s(t) =

 s1(t)...
sK(t)

 is the vector of K source signals at time t.

MVA Presentation : Group D Indian Statistical Institute, Kolkata December 2, 2024 34 / 68



Detecting Number of Signals

Understanding the model

x(t)p×1 = Ap×ks(t)k×1 + σn(t)p×1

There K signal sources. At any timepoint t, the K signals are superimposed,
get mixed with noise, and are sampled.
For example consider audio data. K is usually NOT very large.

Figure: Observed at time points t1, t2, · · · , tn
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Detecting Number of Signals

Assumptions of the model

Assume the signals are real-valued. The same set of results holds even
if the signals are complex-valued as well.
s(t) is assumed to have 0 mean and stationary with
full rank covariance matrix.
σ is the unknown noise level .
n(t) is a p× 1 Gaussian noise vector, distributed
N(0, Ip) and independent of s(t) .

Under these assumptions, the population covariance matrix becomes

WTΣW = σ2Ip + diag(λ1, . . . , λK , 0, . . . , 0)
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Detecting Number of Signals

Estimating the number of original signals

How can we determine the number of Signals from
x(t1), · · · , x(tn) ?

Eigenvalues of Σ are
λ1 + σ2, · · · , λK + σ2, σ2, · · · , σ2

So the first K eigenvalues of Σ will be significantly
large.
We expect the same for Sn.
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Detecting Number of Signals

Eigenvalues for 2 signal case

Figure: Caption
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Detecting Number of Signals

Eigenvalues for 3 signal case

Figure: Caption
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Detecting Number of Signals

Eigenvalues for 4 signal case

Figure: Caption
MVA Presentation : Group D Indian Statistical Institute, Kolkata December 2, 2024 40 / 68



Detecting Number of Signals

Large ?

So it turns out that the number of signals will
essentially be the number of significantly large
eigenvalues.
How to determine the threshold of being large?

Thanks to RMT!
We have Tracy Widom Laws to determine
asymptotic cut-off for the eigenvalues.
So we will use this cut-off and only take the first
few which pass the cut-off!!
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Detecting Number of Signals

More formally...

We have eigenvalues l1 ≥ l2 ≥ · · · ≥ lp ≥ 0 of the sample covariance matrix

Sn =
1

n

n∑
i=1

x(ti)x(ti)T

For k = 1, 2, · · · ,min(p, n)− 1, we test

H0: at most k − 1 signals vs H1: at least k signals

Under the null hypothesis, lk arises from noise, so we

reject H0 if lk > σ̂2(k)Cn,p,k(α)
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Detecting Number of Signals

Fixing the threshold

σ̂2(k) = 1
p−k

∑p
j=k+1 lj , estimate of the unknown

noise level.
Cn,p,k(α) = µn,p−k + s(α)ξn,p−k

µn,p = 1
n (
√
n− 1/2 +

√
p− 1/2)2

ξn,p =
√

µn,p

n

(
1√

n−1/2
+ 1√

p−1/2

)1/3

s(α) is the 1− α quantile of the Tracy Widom
distribution.
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Detecting Number of Signals

The Algorithm

So, we will proceed sequentially for
k = 1, 2, · · · ,min(p, n)− 1

Test the hypothesis at each stage.
Will continue until the first non-rejection.

Kritchman and Nadler (2009) showed

Pr{reject H0|H0} = Pr{ℓk > σ2Cn,p,k(α)|H0} ≈ α

Also they showed that for a suitably chosen
sequence of {α}n, K̂RMT,n can be shown to be
consistent i.e.

lim
n→∞

P(K̂RMT,n = K) = 1
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Detecting Number of Signals

The Algorithm!

Algorithm 1: Algorithm for detecting number of signals
Input: Confidence level α, observations ℓk for k = 1, . . . ,min(p, n)− 1
Output: Estimated number of signals K̂RMT
for k = 1 to min(p, n)− 1 do

Compute the threshold σ̂2(k)Cn,p,k(α) if ℓk > σ̂2(k)Cn,p,k(α) then
conclude that there are at least k signals and set k = k + 1 ;

else
conclude that there are at most k − 1 signals;
Set K̂RMT = k − 1;
break;

return K̂RMT = arg mink

{
ℓk < σ̂2(k)(µn,p−k + s(α)ξn,p−k)

}
− 1;
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Detecting Number of Signals

Errors from N(0, 1)

Figure: Actual vs Estimated number of Signals for varying n

MVA Presentation : Group D Indian Statistical Institute, Kolkata December 2, 2024 46 / 68



Detecting Number of Signals

Errors from t5

Figure: Actual vs Estimated number of Signals for varying n
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Detecting Number of Signals

Errors from DoubleExp(1)

Figure: Actual vs Estimated number of Signals for varying n
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Detecting Number of Signals

Errors from Cauchy(0, 1)

Figure: Actual vs Estimated number of Signals for varying n
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Detecting Number of Signals

Remarks

For signals arising from the Cauchy distribution, the method tremendously
overestimates the number of signals.
Observe that the Tracy-Widom Law provides the threshold for significant
eigenvalue.
One of the required conditions for the largest eigenvalue to be asymptotically
stable is the finiteness of the fourth moment.
Here the eigenvalues correspond to the noise that even blows up for which a
bunch of eigenvalues due to the noise also exceed the fixed threshold.
For which, the method falsely classifies some noise variables as signals, so it
overestimates the number of signals.
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Application in Changepoint Detection

Application in Changepoint Detection
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Application in Changepoint Detection

Observed data
Let X1, . . . , Xn ∈ Rp be independent p-dimensional vectors with

cov(Xi) = Σi,p, for 1 ≤ i ≤ n

where each Σi,p ∈ Rp×p is of full rank.
Furthermore, let Xn,p denote an n× p matrix defined by

Xn,p := (XT
1 , . . . , X

T
n )

T
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Application in Changepoint Detection

Primary Goal

Traditionally change point detection after observing the whole data is called
“Offline” Change point detection.
For now, let us consider the case of a single changepoint.
So, for a known τ , we want to test

H0 : Σ1,p = · · · = Σn,p

H1 : Σ1,p = · · · = Στ,p ̸= Στ+1,p = . . .Σn,p
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Application in Changepoint Detection

An Example

Figure: (Left) There is a changepoint at τ = 50 and (Right) There is no change point
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Application in Changepoint Detection

Thinking in terms of eigen values

How can we test whether a particular timepoint is a change
point of covariances or not?

Ryan and Killick (2023) constructs the two sample
test statistics using the eigenvalues of the sample
covariance matrices of the two samples.
If matrices A and B are identical, all of the
eigenvalues of R(A,B) := B−1A is 1.
So, we can give a penalty each time when an eigen
value goes far from 1 and define a distance between
two matrices.
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Application in Changepoint Detection

Let’s look at the distance

(1−x)2+
(
1− 1

x

)2 has that property.
So, we consider this function for each
of the eigenvalues and consider their
aggregate penalty.

So, we distance the following distance

T (A,B) =
∑p

j=1[(1− λj(R(A,B)))
2
+
(
1− λ−1

j (R(A,B))
)2
]
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Then?

Nice! So we can take the sample estimates of the
covariance matrices

1
n1
XT

n1,pXn1,p,
1
n2
XT

n2,pXn2,p

and take their distances.
If that is large, we can say that the two
population covariance matrices are significantly
different.
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Next?

Ryan and Killick (2023) show that

T
(

1
n1
XT

n1,pXn1,p,
1
n2
XT

n2,pXn2,p

)
− p

∫
f∗(x)dFγ(x) → N(µ(γ), σ2(γ))

for known functions Fγ , f
∗, µ(γ), σ(γ), γ = (γ1, γ2),

p
n1

→ γ1,
p
n2

→ γ2

So, we can use the standard normal cutoff for testing after appropriately
scaling and shifting.

Well! That solves one changepoint problem.
But how do we generalize for unknown multiple change-
point problems?
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Application in Changepoint Detection

Ratio Binary Segmentation, Ryan and Killick (2023)

In an interval of time (s, e), for each timepoint τ in
that range (expect edge deletion (l)) we find the
normalized test statistic T̃ (τ) by thresholding at τ .
Then check whether the maximum one crosses the
cutoff or not!
If no change is found then the algorithm terminates.
If a changepoint is found, it is added to the list of
estimated changepoints, and the binary segmentation
procedure is then run on the data to the left and
right of the candidate change.
This process continues until no more changes are
found.
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Visualizing the algorithm
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Application in Changepoint Detection

Finally, The Algorithm!
Algorithm 2: Ratio Binary Segmentation (RatioBinSeg)

Input: Data matrix X, interval (s, e), set of changepoints C, minimum
segment length ℓ, significance level α

Output: Set of changepoints C
Set ν = 1− α

n2 ;
for τ = s+ ℓ to e− ℓ do

Compute γ :=
(

p
τ ,

p
n−τ

)
;

Compute T̃ (τ) := σ−1/2(γ)
(
T
(
Σ(s, τ),Σ(τ, e)

)
− p

∫
f∗(x)dFy − µ(γ)

)
;

end
Set τ̂ := arg maxτ T̃ (τ) for s+ ℓ < τ < e− ℓ;
if T̃ (τ̂) > ν then

Set Cl := RatioBinSeg(X, (s, τ̂), C, ℓ, α);
Set Cr := RatioBinSeg(X, (τ̂ , e), C, ℓ, α);
Update C = C ∪ {τ̂} ∪ Cl ∪ Cr;

end
return Set of changepoints C;
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Application in Changepoint Detection

Simulation Study

For the multiple changepoint setting, let τ := {τ1, ..., τm} and
τ̂ := {τ̂1, ..., τ̂m̂} to denote the set of true changepoints and the set of
estimated changepoints, respectively.
The changepoint τi is said to be detected correctly if |τ̂j − τi| ≤ h for some
1 ≤ j ≤ m̂

Denote the set of correctly estimated changes by τ̂c.
h = 20 is chosen for simulation, although it should be noted that in reality
the desired accuracy would be application-specific and dependent on the
minimum segment length l. Then the False Positive Rate (FPR) is defined as
the number of wrongly detected changepoints out of the detected ones, i.e.

FPR =
|τ̂ | − |τ̂c|

|τ̂ |
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Simulation Study
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Conclusion and Further Directions
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Conclusion and Further Directions

Conclusion

We discussed the LSD and limits of extreme eigenvalues of Wishart and
F−type matrices.
We used the log-transformed eigenvalues for inference on covariance matrix
in one-sample, two-sample, and high-dimensional regression setup.
We discussed the behavior of Principal Components for Spike Covariance
matrices.
We used the Tracy-Widom laws to determine the number of signals from
noisy data.
A changepoint detection method for the covariance matrix was also
demonstrated.
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Further Directions

Extensions of RMT theory for dependent data and apply in high-dimensional
time series.
Extensions of RMT theory for missing values and apply that in
Spatiotemporal data when for each time point a couple of spatial
observations are missing.
Improve computational methods for large random matrix-based methods.
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