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Abstract: This article provides an overview of random matrix theory (RMT) with a focus

on its growing impact on the formulation and inference of statistical models and methodolo-

gies. Emphasizing applications within high-dimensional statistics, we explore key theoretical

results from RMT and their role in addressing challenges associated with high-dimensional

data. The discussion highlights how advances in RMT have significantly influenced the

development of statistical methods, particularly in areas such as covariance matrix infer-

ence, principal component analysis (PCA), signal processing, and changepoint detection,

demonstrating the close interplay between theory and practice in modern high-dimensional

statistical inference.
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1 Introduction

In recent years, the field of statistics has seen a significant shift driven by the rapid gen-

eration of large, complex datasets across diverse disciplines such as genomics, atmospheric

science, communications, biomedical imaging, and economics. These datasets, often high-

dimensional due to their representation in standard coordinate systems, pose challenges

that extend beyond the scope of classical multivariate statistical methods. This evolving

landscape has necessitated the integration of advanced mathematical frameworks, including

convex analysis, Riemannian geometry, and combinatorics, into statistical methodologies.

Among these, random matrix theory has emerged as a powerful tool for addressing key

theoretical and practical problems in the analysis of high-dimensional data.

In this review article, we focus on several application areas of random matrix theory

(RMT) in high-dimensional statistics. These include problems in dimension reduction, hy-

pothesis testing for high-dimensional data, regression analysis, and covariance estimation.

We also briefly describe the important role played by RMT in enabling certain theoretical

analyses in wireless communications and changepoint detection. The challenges posed by

high-dimensional data have sparked renewed interest in several classical phenomena within

random matrix theory (RMT). Among these, the concept of universality holds particular

significance, offering insights into the applicability of statistical techniques beyond the tra-

ditional framework based on the multivariate Gaussian distribution. This article focuses on

aspects of RMT that are most relevant to statistical questions in this context. In particular,

attention is directed toward the behavior of the bulk spectrum, represented by the empirical

spectral distribution, and the edge of the spectrum, characterized by the extreme eigenvalues

of random matrices. Given the central role of the sample covariance matrix in multivariate

analysis, a significant portion of this work is devoted to examining its spectral properties

and their implications for statistical applications.

4



A detailed discussion of these topics is present in Bai and Silverstein (2010), Couillet

and Liao (2022). Also Johnstone (2006), Paul and Aue (2014) discuss many RMT-based

approaches to modern high-dimensional problems. Though RMT has a wide variation of

applications beyond statistics, e.g. wireless communications, finance, and econometrics,

in this article our key focus is to discuss the RMT-based approaches to standard high-

dimensional problems and their novelties in comparison to traditional methods. The article

is organized as follows. In Section 3, we discuss the key theoretical results from random

matrix theory which provides a framework for the statistical methods. We focus mainly on

the asymptotic theory of the spectrum of the two kinds of random matrices - covariance

matrix and the ratio of covariance matrices, for their widespread applications in statistics.

For each of the two kinds of matrices, we discuss the properties of their bulk spectrum and

behavior at the edge of the spectrum, when the matrices are of large dimensions. In the next

Section 4, we discuss statistical applications of RMT. We focus on four problems: inference on

covariance matrices, application in PCA, application in statistical signal detection removing

noise, and changepoint detection.

Theorem 1 being our contribution, we present the proof of that theorem in the appendix

section. We also present a few theoretical applications demonstrating the novelty of this

result in Section 4.1. The rest of the theorems have appeared in the cited papers and we

refer to those cited papers for their proof.

1.1 Notations and Abbreviations

In this paper, P−→ means convergence in probability, L−→ means convergence in distribution.

For a random variable X, FX(·) denotes its CDF. 1(·) denotes the indicator function. RMT

means Random Matrix Theory, ESD stands for Empirical SPectral Distribution, LSD indi-

cates Limiting Spectral Distribution. as µ means almost surely wrt the measure µ.
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2 Background and Motivation

Random matrices play a fundamental role in statistical analysis, particularly in the study

of multivariate data. Classical multivariate analysis, as detailed in influential works such

as Mardia et al. (2024), and Muirhead (2009), frequently addresses key problems through

the analysis of random matrices. These problems are typically formulated in terms of the

eigen-decomposition of Hermitian or symmetric matrices and can be broadly classified into

two categories.

The first category involves the eigen-analysis of a single Hermitian matrix, often re-

ferred to as the single Wishart problem, encompassing methods such as principal compo-

nent analysis (PCA), factor analysis, and tests for population covariance matrices in one-

sample problems. The second category includes generalized eigenvalue problems involv-

ing two independent Hermitian matrices of the same dimension, commonly known as the

double Wishart problem. This includes applications like multivariate analysis of variance

(MANOVA), canonical correlation analysis (CCA), tests for equality of covariance matrices,

and hypothesis testing in multivariate linear regression.

Beyond these, random matrices also play a natural role in defining and characterizing esti-

mators in multivariate linear regression, classification (involving sample covariance matrices),

and clustering (using pairwise distance or similarity matrices). The analysis of eigenvalues

and eigenvectors of random symmetric or Hermitian matrices has a long history in statistics,

dating back to Pearson (1901) pioneering work on dimensionality reduction through PCA.

This article provides a concise overview of these classical problems to set the stage for the

broader discussion of random matrix theory in statistical applications.

Principal component analysis (PCA) is a highly versatile nonparametric tool for data

reduction and model building. The formulation of PCA in classical multivariate analysis at
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the population level is as follows. Suppose that we measure p variables (assume real-valued,

for simplicity), expressed as a random vector X =
(
X(1), . . . , X(p)

)T . Suppose also that the

random vector X has finite variance Σ = E
[
(X − E[X])(X − E[X])T

]
. The primary goal

of PCA is to obtain a lower-dimensional representation of the data in the form of linear

transformations of the original variable, subject to the condition that the residual variance

is as small as possible.

This can be achieved by considering a sequence of linear transformations given by vT
kX, k =

1, 2, . . . , p, satisfying the requirement that Var(vT
kX) is maximized subject to the conditions

that vk are unit norm vectors in Rp (or Cp if the data is complex-valued), and vk is orthonor-

mal to {vj : j = 1, . . . , k− 1}, i.e., vT
k vj = 0 for j = 1, . . . , k− 1. This optimization problem

can be solved in terms of the spectral decomposition of the nonnegative definite Hermitian

matrix Σ:

Σvk = ℓkvk, k = 1, . . . , p, (2.1)

where vk are the orthonormal vectors. Here, ℓk (always real-valued) is an eigenvalue associ-

ated with vk. Note that in this formulation the eigenvalues ℓk are ordered, i.e., ℓ1 ≥ · · · ≥

ℓp ≥ 0. If ℓk is of multiplicity one, then vk is unique up to a sign change.

In practice, we do not know Σ and we typically observe a sample X1, . . . ,Xn for the

variable X. In that case, the empirical version of PCA involves replacing Σ by its natural

estimate Sn = (n−1)−1
∑n

i=1(Xi−X)(Xi−X)T , and performing the spectral decomposition

for Sn.

The corresponding eigenvectors v̂k are often referred to as the sample principal compo-

nents. The corresponding ordered eigenvalues ℓ̂k are typically used to detect the dimension

of the reduction subspace. One of the commonly used techniques is to plot the eigenvalues

against their indices (so-called "scree plot") and then look for an "elbow" in the plot.

There are formal tests based on likelihood ratios (see, Mardia et al. (2024), Muirhead
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(2009)) that assume that, after a certain index, the eigenvalues are all equal and that the

observations are Gaussian. Notice that the name "single Wishart" arises from the fact that

if X1, . . . ,Xn are i.i.d. Np(0,Σ), then (n− 1)Sn has Wp(Σ, n− 1) distribution.

Under Gaussianity, one of the commonly used tests for sphericity, i.e., the hypothesis H0 :

Σ = Ip, is Roy’s largest root test (Roy (1953)), which rejects H0 if ℓ̂1, the largest eigenvalue

of S, exceeds a threshold determined by the level of significance. If H0 : Σ = σ2Ip for some

unknown σ2, the corresponding generalized likelihood ratio test, under an alternative that

assumes Σ to be a rank-one perturbation of σ2Ip, rejects for large values of ℓ̂1/
(∑p

j=2 ℓ̂j
)

(Johnson and Graybill (1972); Nadler (2008)).

A factor analysis problem can be seen as a generalization of PCA in that it assumes a

certain signal-plus-noise decomposition of the observation vector X:

X− µ = Lf + ε, (2.2)

where f is an m×1 dimensional random vector, L is a p×m dimensional nonrandom matrix,

f and ε are uncorrelated, and ε has mean 0 and variance Ψ, a p × p diagonal matrix. For

identifiability, it is typically assumed that E[f ] = 0 and E[ffT ] = Im.

Under this setting, the covariance matrix of X is of the form Σ = LLT + Ψ. Thus, if

Ψ is a multiple of the identity, the problem of estimating L from data can be formulated in

terms of a PCA of the sample covariance matrix. One important distinction between PCA

and factor analysis is that, in the latter case, the practitioner implicitly assumes a causal

model for the data. In general, factor analysis problems are often solved through a maximum

likelihood approach (see Tipping and Bishop (1999)). A more enhanced version of the factor

analysis model, the so-called dynamic factor model, is used extensively in econometrics,

where the factors f are taken to be time-dependent (Forni et al. (2000)).

A detailed discussion of various versions of the double Wishart eigenproblem, including
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a summary of the associated distribution theory when the observations are Gaussian, can

be found in Johnstone and Lu (2009). Within this framework, we first consider the canon-

ical correlation analysis (CCA) problem. Again, first, we deal with the formulation at the

population level. Suppose that real-valued random vectors X and Y are jointly observed,

where X is of dimension p and Y is of dimension q. Then a generalization of the notion of

correlation between X and Y is expressed in terms of the sequence of canonical correlation

coefficients defined as

ρk = max
(u,v)∈Sk

|Cor(u⊤X,v⊤Y)|, k = 1, 2, . . . ,min{p, q}, (2.3)

where

Sk := {(u,v) ∈ Rp+q : u⊤ΣXXu = v⊤ΣYYv = 1; u⊤ΣXXuj = v⊤ΣYYvj = 0, j = 1, . . . , k−1},

with ΣXX = Var(X), ΣYY = Var(Y), and (uk,vk) denoting the pair of vectors for which the

maximum in (2.3) is attained. If ΣXY = Cov(X,Y), then the optimization problem (2.3)

can be formulated as the following generalized eigenvalue problem: the successive canonical

correlations ρ1 ≥ · · · ≥ ρmin{p,q} ≥ 0 satisfy the generalized eigen-equations

det(ΣXYΣ
−1
YYΣYX − ρ2ΣXX) = 0. (2.4)

When we have n samples {(Xi,Yi) : i = 1, . . . , n} we can replace ΣXX,ΣXY and ΣYY by

their sample counterparts and, assuming n > max{p, q}, the corresponding sample canonical

correlations r1 ≥ · · · ≥ rmin{p,q} ≥ 0 satisfy the sample version of Equation (2.4). It is

shown in Mardia et al. (2024) that in the latter case, we can reformulate the corresponding

generalized eigenanalysis problem as solving

det(U− r2(U+V)) = 0, (2.5)

where U and V are independent Wishart matrices if (Xi,Yi) are i.i.d. Gaussian and ΣXY =

0, i.e., X and Y are independently distributed.

9



Next, we consider the multivariate Linear Regression model,

Y = XB+ E (2.6)

where Y = [Y1 : · · · : Ym] ∈ Rn×m is the response matrix consisting n observations for

each of the m response variable, X ∈ Rn×p is the design matrix where p is the number of

covariates. E denotes the error matrix. For inference purposes, it is further assumed that

E ∼ NDM(0,Σ) i.e. rows of E are iid from N(0,Σ). Then, as described in Mardia et al.

(2024), the union-intersection test for the linear hypothesis of the form H0 : CBD = 0

where C and D are specified conformable matrices, can be expressed in terms of the largest

eigenvalue of U(U+V)−1 where U and V are appropriately specified independent Wishart

matrices (under Gaussianity of the entries of E).

The two-sample test for equality of variances assumes that we have i.i.d. samples from

two normal populations Np(µ1,Σ1) and Np(µ2,Σ2) of sizes n1 and n2, say. Then several

tests for the hypothesis H0 : Σ1 = Σ2 can be formulated in terms of functionals of the

eigenvalues of U(U + V)−1 where U = (n1 − 1)S1 and V = (n2 − 1)S2 are the sample

covariances for the two samples, which would follow independent Wishart distributions in p

dimensions with d.f. n1 − 1 and n2 − 1 and dispersion matrix Σ1 = Σ2 under H0.

Now it is to be noted that the traditional methods to deal with the above problems

assume the dimension of the data to be fixed and relatively small compared to the number

of data points. But in the modern era, most of the high-dimensional data arising in fields

such as genomics, economics, atmospheric science, chemometrics, and astronomy, to name

a few, are of enormously large dimensions which makes it very challenging to apply the

traditional methods directly to those datasets. And so, to accommodate the analysis of such

datasets, it is imperative to either modify or reformulate some of the statistical techniques.

This is where RMT has been playing a significant role, especially over the last decade. In

the next sections, we develop these modern RMT-based methods with a key focus on their
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applications in statistics.

3 High Dimensional Random Matrices

In Random Matrix Theory, two particular kinds of random matrices draw special attention

for their remarkable application in statistics - Covariance Matrices and F-type Matrices. In

this section, we discuss the theoretical properties of these two kinds of random matrices,

which play a key role in most modern developments in high-dimensional statistics. Most

of these results focus on the spectrum’s behavior when the matrix has a large dimension.

Hence to address those properties, we first give a basic introduction to these matrix models

and describe a couple of key questions associated with it.

In classical random matrix theory, in the context of covariance matrices, one of the most

fundamental and crucially studied matrices is the Wishart Matrix. The Wishart matrix is

defined as specifying two sequences of integers n, the sample size, and p = p(n), the data

dimension. Most of the results additionally assume that the sequences are related so that,

as n→ ∞, p = p(n) → ∞ satisfying,

lim
n→∞

p

n
= γ ∈ (0,∞)

So if, X1, · · · , Xn
iid∼ Np(0,Σ), and X = [X1 : · · · : Xn], then the distribution of XXT is

called Wishart distribution with parameter Σ, degree of freedom n and dimension p and

abbreviated as Wp(Σ,m). A density of the distribution is given by

fW (X) =
|X|(n−p−1)/2e−

1
2
tr(Σ−1X)

2np/2|Σ|n/2Γp

(
n
2

)
where Γp(·) is the multivariate gamma function. The distribution was first studied by

Wishart (1928) and continues to be a fundamental focus in multivariate statistics there-

after. The central reason for Wishart matrices being so frequent and useful in statistics is
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their association with sample covariance matrices - the sample covariance matrix of a normal

random sample follows a Wishart distribution i.e. If the data X1, · · · , Xn
iid∼ Np(0,Σ), and

S = 1
n

∑n
i=1(Xi −X)(Xi −X)T is the sample covariance matrix, then nS ∼ Wp(Σ, n − 1).

Further detailed properties of the distribution can be found in Muirhead (2009), Mardia

et al. (2024). From the definition, it can be seen that the Wishart distribution is the analog

of the chi-square distribution of the univariate case. Similarly, the univariate F−distribution

has also an extension for matrices, which is called Matrix F−distribution. If A ∼ Wp(Ip, ν)

and B ∼ Wp(Ip, δ) and A,B are independent then the distribution of B−1/2AB−1/2 is called

a matrix F(Ip, ν, δ) distribution. The distribution was originally derived by Olkin and Rubin

(1964). Perlman (1977) discusses several interesting properties of this distribution. Usually

if A,B are independent random matrices such that A ∼ Wp(Σ,m) and B ∼ Wp(Σ, n) and

Σ is positive definite and m ⩾ p, then A−1B is called an F−type matrix in the literature.

For their widespread applications such as in Linear Discriminant Analysis, Canonical Corre-

lation Analysis, etc, F−type matrices are also extensively studied. However, the properties

of these matrices, which played a crucial role in statistical inference and related fields over

decades, have been studied beyond the parametric framework, under minimalistic assump-

tions mostly for the high-dimensional setup. We discuss the properties of those matrices in

terms of their spectrum in both parametric and nonparametric frameworks.

3.1 Spectral Properties of large Sample Covariance Matrices

The sample covariance matrix is one of the most important random matrices in multivariate

statistical inference. It is fundamental in hypothesis testing, principal component analysis,

factor analysis, and discrimination analysis. Many test statistics are defined by their eigen-

values. However, for large matrices, it is more convenient to study the asymptotic behavior

of their spectrum as they exhibit nice properties.
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3.1.1 Properties of the whole Spectrum

Suppose X is a n×n random matrix having eignevalues λ1, · · · , λn ∈ C. Then the empirical

distribution of the eigenvalues of X is called the empirical spectral distribution(ESD) of X.

If the matrix X is real, symmetric then all of its eigenvalues are real and hence the empirical

spectral distribution is given by F̂ (x) = 1
n

∑n
i=1 1(λi ⩽ x) which is the case for Wishart

matrices. In random matrix theory, the ESD is crucial to study as most of the properties

of a matrix can be reformulated in terms of its eigenvalues and hence is of key interest.

In different domains like machine learning, signal processing, and wireless communications,

several functions of the eigenvalues give important objects to study (eg. Tulino et al. (2004),

Couillet and Liao (2022) etc).

In the parametric setup, under the normality assumption of the data, when we have the

exact distribution of the sample covariance matrix, one of the most fundamental questions

one can ask is how to characterize the joint distribution of the spectrum. If X ∼ Wp(Σ, n),

then the rank of X is min{p, n} almost surely. Now for n ⩽ p−1, the rank of X ⩽ p−1 and

hence the eigenvalues do not have a joint pdf. However, for n > p− 1, the joint probability

density function (pdf) for the eigenvalues of X exists and can be found in Muirhead (2009)

and a detailed study on their joint distribution can be found in James and Lee (2014).

Furthermore, for n > p − 1, the following central limit theorem holds for log-transformed

eigenvalues of X.

Theorem 1. Let Xn ∼ Wp(Σ, n) where n ⩾ p. Let λ(n)1 , · · · , λ(n)p be the eigenvalues of Xn

and λ1, · · · , λp be the eigenvalues of Σ. Then,

sup
x∈R

∣∣∣∣∣P
(√

n

2p

(
p∑

i=1

log

(
λ
(n)
i

λi

)
−

p∑
i=1

log (n− p+ i)

)
⩽ x

)
− Φ(x)

∣∣∣∣∣ = O

(
p√
n

)
where Φ(x) denotes the Standard Normal CDF.

The proof of Theorem 1 can be found in the appendix. Hence, for p√
n
→ 0 as n → ∞,
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we have

√
n

2p

(
p∑

i=1

log

(
λ
(n)
i

λi

)
−

p∑
i=1

log (n− p+ i)

)
L−→ N(0, 1)

It is to be noted that the above central limit theorem is very useful for one-sample and

two-sample testing for covariance matrices, to approximate the power function of such tests,

and also for inference on covariance matrices in high dimensional linear models. A detailed

discussion of these applications can be found in Section 4.1. The theorem also provides a

rate of convergence of the eigenvalues of the sample covariance matrix to the population

covariance matrix. Often for approximation purposes, functions of the spectrum of the pop-

ulation covariance matrices are estimated using that of the corresponding sample covariance

matrix. In such cases, the theorem provides an upper bound of the error. Hence, it is useful

for sample size determination if there is a predetermined allowable upper bound on the error.

In this context, a natural follow-up question is whether the weak limit of the ESD for

Wishart matrices exists. The celebrated Marcenko-Pastur Law answers this question in

the context of sample covariance matrices. With an assumption of the finiteness of the

fourth moment of the entries of the data matrix, Marchenko and Pastur (1967) showed

that depending on the value of γ = lim
n→∞

p
n
, the weak limit of the ESD of sample covariance

matrices exist.

Theorem 2 (Marcenko-Pastur Law). Suppose that X is a p× n matrix with i.i.d. real- or

complex-valued entries with mean 0 and variance 1. Suppose lim
n→∞

p
n
= γ ∈ (0,∞) . Then, as

n → ∞, the empirical spectral distribution (ESD) of S = 1
n
XXT converges almost surely in

distribution to a nonrandom distribution, known as the Marcenko–Pastur law and denoted

by Fγ. If γ ∈ (0, 1], then Fγ has the p.d.f.:

fγ(x) =

√
(b+(γ)− x)(x− b−(γ))

2πγx
, b−(γ) ≤ x ≤ b+(γ), (3.1)
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Figure 1: Marcenko–Pastur density functions for γ = 0.1, 0.25, 0.5, 1

where

b±(γ) = (1±√
γ)2 .

For x outside this interval, fγ(x) = 0.

If γ ∈ (1,∞), then Fγ is a mixture of a point mass at 0 and the p.d.f. f1/γ(x), with

weights 1− 1/γ and 1/γ, respectively.

It is to be noted that the above result is distribution-free, in the sense the limiting

distribution only depends on the limiting ratio of data dimension and sample size (γ) and is

free of the data distribution. As γ increases from 0 to 1, the spread of the eigenvalues also

increases. However, a necessary condition for the weak limit of the ESD to exist is to γ > 0.

For γ = 0, as illustrated in Figure 1, the maximum and minimum eigenvalues converge to 1

and hence Marcenko-Pastur law does not hold for this case. However, with an assumption

of the finiteness of the fourth moment of the entries of X, applying a suitable centering

and scaling to the matrix S, Bai and Yin (1988) derived the weak limit of the ESD of the

transformed matrix when p
n
→ 0.

Theorem 3 (Bai and Yin, 1988). Suppose that X is a p × n matrix with i.i.d. real-valued
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entries with mean 0 and variance 1 with finite fourth moment. Suppose lim
n→∞

p
n
= 0 . Then,

as p → ∞, the empirical spectral distribution (ESD) of Sp = 1
2
√
np

(
XXT − nIp

)
converges

almost surely in distribution to a nonrandom distribution, known as semi-circular distribution

having the pdf

f(x) =
1

2π

√
4− x2, −2 ≤ x ≤ 2 (3.2)

Like the Marcenko-Pastur law, the above theorem is also distribution-free and provides

the rate at which the eigenvalues of S = 1
n
XXT goes to 1 when p

n
→ 0. However, one

potential disadvantage of the above two theorems is the requirement of the i.i.d data. In

both of the theorem, in the data matrix X = [X1, · · · , Xn], where each of the columns (Xi)

represents a data point of dimension p, though each of the columns can be assumed to be

independent, in practice it is very unlikely that the entries of a single data point in Rp will be

mutually independent as well. Henceforth substantial progress has been made to generalize

these results by relaxing the conditions of independence within the columns. If Y1, · · · , Yn are

i.i.d. p−dimensional data points with covariance matrix Σ, then Y = [Y1, · · · , Yn] = Σ
1
2X,

where X satisfies the conditions of Theorem 2 and 3. In this context, Silverstein (1995)

develops the Marcenko-Pastur law for the ESD of 1
n
Σ

1
2XXTΣ

1
2 when p

n
→ γ ∈ (0,∞) under

the same conditions as of Theorem 2. For p
n
→ 0, under the conditions of Theorem 3, Bao

(2012) showed the ESD of
√

n
p

(
1
n
Σ

1
2XXTΣ

1
2 −Σ

)
=
√

n
p
Σ

1
2

(
1
n
XXT − I

)
Σ

1
2 converges

almost surely in distribution to a nonrandom distribution.

Further research has been done to develop similar results under different forms of de-

pendence. For instance, Yin and Krishnaiah (1987) derived similar results when X1, · · · , Xn

are i.i.d from a spherically symmetric distribution. Hui and Pan (2010), Wei et al. (2016)

considered the case when the data points come from a m−dependent process. Hofmann-

Credner and Stolz (2008) and Friesen et al. (2013) assumed that the entries of the data

matrix X = [X1, · · · , Xn] can be partitioned into independent subsets while allowing the
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entries from the same subset to be dependent. Gotze and Tikhomirov (2006) replaced the

independent assumption by a technical martingale-type condition. Yao (2012) develops a

version of the Marcenko-Pastur law when X1, · · · , Xn are independent and entries of each

Xi comes from a linear time series process.

3.1.2 Properties of extreme eigenvalues

In the previous section, we have a detailed description of the limit of the ESD of random ma-

trices. However, in many situations, it is important to know whether the sample eigenvalues

of S (as in Theorem 2) lie inside the support of Fγ as well. For instance, in signal processing,

pattern recognition, edge detection, and many other areas, the support of the LSD of the

population covariance matrices consists of several disjoint pieces. So it is essential to know

whether or not the LSD of the sample covariance matrices is also separated into the same

number of disjoint pieces, and under what conditions this is true. Also, many statistics can

be written as a function of the integrals of the ESD of the random matrix. For example, the

determinant of the sample covariance matrix is very useful in wireless communication and

signal processing (Paul and Aue (2014)) which can be written as

det(A) =
n∏

j=1

λj = exp

(
n

∫ ∞

0

log xFA(dx)

)
(3.3)

So under the knowledge of the asymptotic distribution of the ESD, usually the Helly-Bray

theorem (Billingsley (2013)) is used to obtain an approximation of the statistic. But often

such functions are not bounded (e.g. the function in 3.3 is logx which is unbounded. As a

result, the LSD and Helly-Bray theorem cannot be used to approximate the statistics. This

limitation reduces the usefulness of the LSD. However, in many cases, the supports of the

LSDs are compact intervals. Still, this alone does not guarantee that the Helly-Bray theorem

can be applied unless one also proves in addition that the extreme eigenvalues of the random

matrix stay within certain bounded intervals. These examples demonstrate that knowledge
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about the weak limit of the ESD is not sufficient. Furthermore, extreme eigenvalues of

random matrices themselves occur naturally in many problems such as principal component

analysis. Henceforth studies regarding the asymptotic properties of the extreme eigenvalues

of random matrices are extremely important. Under the assumption of the finiteness of the

fourth moment of the i.i.d. entries, Yin et al. (1984) proved that the maximum eigenvalue

of S (as in Theorem 2) converges almost surely.

Theorem 4 (Yin et al. (1984)). Suppose that X is a p × n matrix with i.i.d. real-valued

entries with mean 0 and variance σ2 and finite fourth moment. Suppose lim
n→∞

p
n
= γ ∈ (0,∞)

. Suppose λmax(n) is the maximum eigenvalue of the p×p random matrix S = 1
n
XXT . Then

lim
n→∞

λmax(n) = (1 +
√
γ)2σ2 a.s. (3.4)

A similar result was developed in Bai and Yin (2008) for the smallest eigenvalue of S as

well under the same set of assumptions as of Theorem 5 as well when p < n.

Theorem 5 (Bai and Yin (2008)). Suppose that X is a p× n matrix with i.i.d. real-valued

entries with mean 0 and variance σ2 and finite fourth moment. Suppose lim
n→∞

p
n
= γ ∈ (0, 1)

. Suppose λmin(n) is the smallest eigenvalue of the p× p random matrix S = 1
n
XXT . Then

lim
n→∞

λmin(n) = (1−√
γ)2σ2 a.s. (3.5)

These results give an accurate idea of the asymptotic range of the eigenvalues of sample

covariance matrices under very mild assumptions. However many classical tests in multi-

variate analysis consist of the largest eigenvalues of sample covariance matrices (eg. Roy’s

largest root test) which makes the asymptotic distributions of the maximum eigenvalue of

special interest. In the celebrated paper Johnstone (2001), the limiting distribution of the

largest eigenvalue of the sample covariance matrix was derived when the entries of the data

matrix are i.i.d from the standard normal distribution. Suppose that X = ((Xij)) is an p×n
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matrix with entries are i.i.d. from standard normal distribution,

Xij ∼ N(0, 1).

Let l1 be the largest sample eigenvalue of the Wishart matrix XXT . Define the centering

and scaling constants as follows:

µn,p =
(√

n− 1 +
√
p
)2

(3.6)

σn,p =
(√

n− 1 +
√
p
)( 1√

n− 1
+

1
√
p

)1/3

(3.7)

The Tracy-Widom law of order 1 has the distribution function defined by:

F1(s) = exp

(
−1

2

∫ ∞

s

[
q(x) + (x− s)q2(x)

]
dx

)
, s ∈ R (3.8)

where q(x) solves the nonlinear Painlevé II differential equation:

q′′(x) = xq(x) + 2q3(x) (3.9)

with the asymptotic condition:

q(x) ∼ Ai(x) as x→ +∞, (3.10)

where Ai(x) denotes the Airy function. This distribution was found by Tracy and Widom

(1996) as the limiting law of the largest eigenvalue of an n× n Gaussian symmetric matrix.

In terms of these distributions, the asymptotic distribution of l1 can be stated as follows,

Theorem 6 (Johnstone (2001)). Suppose that X = ((Xij)) is an p×n matrix whose entries

are i.i.d. from standard normal distribution i.e. Xij
i.i.d.∼ N(0, 1). If p

n
→ γ ∈ (0,∞), and l1

denotes the highest eigenvalue of XXT then,

l1 − µn,p

σn,p

L−→ W1 ∼ F1 (3.11)

where µn,p, σn,p are as in 3.6 and 3.7 respectively and W1 is a random variable following

Tracy-Widom distribution defined in 3.8.
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Figure 2: Density function for the Tracy-Widom Distribution

In Karoui (2003), the same result was extended for the cases γ = 0,∞ as well. These

results are very useful in single Wishart (e.g. principal component analysis (PCA), factor

analysis, and tests for population covariance matrices in one-sample problems) and double

Wishart problems (e.g. multivariate analysis of variance (MANOVA), canonical correlation

analysis (CCA), tests for equality of covariance matrices and tests for linear hypotheses in

multivariate linear regression problems). Many asymptotic generalizations of classical tests

(e.g. Roy’s largest root test) have been obtained using the above results which have a wide

range of applications in signal processing, wireless communication (Paul and Aue (2014)),

and machine learning (Couillet and Liao (2022)). Section 4 has a detailed discussion on

these applications.

To check the practical applicability of Theorem 6, for the purpose of approximation, a

simulation study was done (Johnstone (2001)). First, for square cases n = p = 5, 10 and

100, using R = 10, 000 replications, results are shown in Table 1. Even for 5×5 and 10×10,

the approximation seems to be quite good in the right-hand tail at conventional significance

levels of 10%, 5%, and 1%. At 100×100, the approximation seems reasonable throughout the
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range. The same general picture holds for n/p in the ratio 4:1. Even for 5× 20 matrices, the

approximation is reasonable, if not excellent, at the conventional upper significance levels.

A further summary message from these computations is that in the null Wishart case,

about 80% of the distribution lies below µnp and 95% below µnp + σnp. Ma (2012) has a

detailed discussion on the accuracy of the Tracy-Widom laws.

Table 1: (Johnstone (2001)) Simulations for finite n × p versus Tracy–Widom Limit. The
first column shows the probabilities of the F1 limit distribution corresponding to fractions
in the second column. The next three columns show estimated cumulative probabilities for
l1, centered and scaled as in Equation (3.6) and 3.7, in R = 10, 000 repeated draws from
Wp(n, I) with n = p = 5, 10, 100. The following three cases have n : p in the ratio 4:1.
The final column gives approximate standard errors based on binomial sampling. The bold
font highlights some conventional significance levels. The Tracy–Widom distribution F1 was
evaluated on a grid of 121 points −6(0.1)6 using the Mathematica package p2Num written by
Craig Tracy. The remaining computations were done in MATLAB, with percentiles obtained
by inverse interpolation and using randn() for normal variates and norm() to evaluate the
largest singular values.

Percentile TW 5 × 5 10 × 10 100 × 100 5 × 20 10 × 40 100 × 400 2 × SE

-3.90 0.01 0.000 0.001 0.007 0.002 0.003 0.010 (0.002)
-3.18 0.05 0.003 0.015 0.042 0.029 0.039 0.049 (0.004)
-2.78 0.10 0.019 0.049 0.089 0.075 0.089 0.102 (0.006)
-1.91 0.30 0.211 0.251 0.299 0.304 0.307 0.303 (0.009)
-1.27 0.50 0.458 0.480 0.500 0.539 0.524 0.508 (0.010)
-0.59 0.70 0.697 0.707 0.703 0.739 0.733 0.714 (0.009)
0.45 0.90 0.901 0.907 0.903 0.919 0.918 0.908 (0.006)
0.98 0.95 0.948 0.954 0.950 0.960 0.961 0.957 (0.004)
2.02 0.99 0.988 0.991 0.991 0.992 0.993 0.992 (0.002)

3.2 Asymptotic Properties of F−type matrices

In this section, we discuss the asymptotic properties of a multivariate F− matrix. Multivari-

ate F-distribution plays a crucial role in several areas of multivariate data analysis, especially

when the relationships between multiple variables are tested simultaneously. It has primary

application in two-sample tests on covariance matrices, MANOVA (multivariate analysis of
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variance), multivariate linear regression, and in Canonical Correlation Analysis. Pioneering

work by Wachter (1980) examined the limiting distribution of the solutions to the equation:

det
(
X1,n1X

T
1,n1

− λX2,n2X
T
2,n2

)
= 0,

where Xj,nj
is a p × nj matrix with i.i.d. entries from N(0, 1), and X1,n1 is independent

of X2,n2 . When X2,n2X
T
2,n2

is of full rank, the solutions to this equation are n2

n1
times the

eigenvalues of the multivariate F-matrix:(
1

n1

X1,n1X
T
1,n1

)(
1

n2

X2,n2X
T
2,n2

)−1

.

Yin and Krishnaiah (1983) proved the existence of the limiting spectral distribution

(LSD) of the matrix sequence {SnTn}, where Sn is a standard Wishart matrix of dimension

p with n degrees of freedom, and p
n
→ γ ∈ (0,∞), Tn is a positive definite matrix with

βk(Tn) → Hk, and the sequence Hk satisfies the Carleman condition. In Yin (1986), this

result was extended to the case where the sample covariance matrix is formed from i.i.d.

real random variables with mean zero and variance one. Building on the work of Yin and

Krishnaiah (1983), later Yin et al. (1983) demonstrated the existence of the LSD of the

multivariate F-matrix. The explicit form of the LSD for multivariate F-matrices was derived

by Bai et al. (1988) and Silverstein (1995) and is given by the following theorem.

Theorem 7 (Bai et al. (1988)). Let F = Sn1S
−1
n2

, where Sni
(for i = 1, 2) is a sample

covariance matrix with dimension p and sample size ni, and the underlying distribution has

mean 0 and variance 1. If Sn1 and Sn2 are independent, p
n1

→ γ ∈ (0,∞), and p
n2

→

γ′ ∈ (0, 1), then the limiting spectral distribution (LSD) Fγ,γ′ of F exists and has a density

function given by:

fγ,γ′(x) =

{
(1−γ′)

√
(b−x)(x−a)

2πx(γ+xγ′)
, if a < x < b,

0, otherwise,
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where

a =

(
1−

√
γ + γ′ − γγ′

1− γ′

)2

, b =

(
1 +

√
γ + γ′ − γγ′

1− γ′

)2

.

Further, if γ > 1, then Fγ,γ′ has a point mass 1− 1
γ

at the origin.

Besides the entire ESD, the extreme eigenvalues of multivariate F−matrices are also

immensely important in many high-dimensional problems such as testing sphericality in co-

variance matrices, testing equality of multiple covariance matrices, correlated noise detection,

etc (Han et al. (2016)). The following result from the phenomenal work of Han et al. (2016)

obtains the limiting distribution of the generalized F−type matrices under mild assump-

tions. Before starting the actual theorem, we first state a condition the data matrix needs

to satisfy.

Definition 1. A real random matrix Z is said to satisfy Condition 1, if it consists of entries

{Zij} where {Zij} are independent random variables with E[Zij] = 0 and E[|Zij|2] = 1 and

for all k ∈ N, there exists a constant Ck such that E[|Zij|k] ≤ Ck.

In conjunction with the above definition, the following theorem presents the desired

limiting distribution.

Theorem 8 (Han et al. (2016)). Also assume that the real random matrices X = (Xij)p×n

and Y = (Yij)p×m are independent and satisfies Condition 1. Set m = m(p) and n = n(p).

Suppose that

lim
p→∞

p

m
= d1 > 0, lim

p→∞

p

n
= d2 > 0, 0 < lim

p→∞

p

m+ n
< 1.

satisfies 0 < d1 < 1 and, 0 < d2 <∞. Let,

m̆ = max{m, p}, n̆ = min{n,m+ n− p}, p̆ = min{m, p}.
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Moreover, let

sin2
(γ
2

)
=

min{p̆, n̆} − 1
2

m̆+ n̆− 1
, sin2

(
ψ

2

)
=

max{p̆, n̆} − 1
2

m̆+ n̆− 1
,

µJ,p = tan2

(
γ + ψ

2

)
, (3.12)

σ3
J,p =

16µ3
J,p

(m̆+ n̆− 1)2
· 1

sin(γ) sin(ψ) sin2(γ + ψ)
. (3.13)

Set

Bp =
XXT

n̆
and Ap =

YYT

m̆
.

Denote the largest root of

det(λAp −Bp) = 0

by λ1. Then

lim
p→∞

P

(
n̆
m̆
λ1 − µJ,p

σJ,p
⩽ s

)
= F1(s)

where F1(s) is the cumulative distribution function of the Tracy-Widom distribution defined

in Equation (3.8).

The above theorem has a couple of interesting remarks. For instance, this immediately

implies the distribution of the largest root of det(λ(Bp +Ap)−Bp) = 0. In fact, the largest

root of det(λ(Bp +Ap)−Bp) = 0 is λ1

1+λ1
if λ1 is the largest root of the F matrices BpA

−1
p

in Theorem 8 when 0 < d1 < 1.

When d1 > 1, the largest root of det(λ(Bp+Ap)−Bp) = 0 is one with multiplicity (p−m).

In that case, instead one considers the (p−m+1)th largest root of det(λ(Bp+Ap)−Bp) = 0.

It turns out that the (p−m+1)th largest root of det(λ(Bp+Ap)−Bp) = 0 is λ1

1+λ1
if λ1 is the

largest root of det(λAp −Bp) = 0. The exact order of the centering and scaling parameters

µJ,p and σJ,p can also be obtained along the lines of this result in terms of m̆, n̆ and p.

Section 4 has a detailed discussion on the applications of these results on high-dimensional

inference.
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4 Applications in Statistics

In this section, we discuss various applications of random matrix theory in statistics and

related fields. So far there are a lot of ground-breaking applications of RMT that helped to

develop robust, efficient high dimensional data handling methods, enriched complex machine

learning algorithms, optimized signal processing techniques and motivated a lot of crucial

discoveries in genomics, finance, climate science, and social network analysis. Henceforth,

in this section, the key focus is on these applications to real-world problems in conjunction

with the theoretical discussion above.

4.1 Inference on Covariance Matrices

One of the primary applications of the theory of large random matrices in high-dimensional

statistics is inference on covariance matrices. Since the results provide asymptotic properties

of the spectra of large random matrices, using those results one can check whether one

estimate is consistent under certain conditions, and also for hypothesis testing, one can

approximate the power functions if the test statistic is a function of the spectrum. In this

regard, One of the earliest uses of the distribution of the largest eigenvalue of the sample

covariance matrix is in testing the hypothesis H0 : Σ = Ip when i.i.d. samples are drawn

from a N(µ,Σ) distribution. The Tracy–Widom law for the largest sample eigenvalue under

the null Wishart case, i.e., when the population covariance matrix Σ = Ip, allows a precise

determination of the cut-off value for this test, which, with a careful calibration of the

centering and normalizing sequences, is very accurate even for relatively small p and n

(Johnstone (2001),Johnstone and Lu (2009)).

The behavior of the power of the test requires formulating suitable alternative models.

For instance, for data matrix X = [X1, · · · , Xp] ∈ Rp×n with iid columns xi, consider the
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testing problem,
H0 : X = σZ

H1 : X = asT + σZ
(4.1)

where Z = [z1, . . . , zn] ∈ Rp×n with zi ∼ N(0, Ip), a ∈ Rp deterministic with unit norm

∥a∥ = 1, s = [s1, . . . , sn]
⊤ ∈ Rn with si i.i.d. random scalars, and σ > 0. We also denote

c = p/n (and demand as usual that 0 < lim inf c ≤ lim sup c <∞).

This model describes the observation of either pure Gaussian noise data σzi with zero

mean and covariance σ2Ip, or of deterministic information a possibly modulated by a scalar

(random) signal si (which could simply be ±1) added to the noise. If the parameters a, σ as

well as the statistics of si are known, a mere Neyman-Pearson test allows one to discriminate

between H0 and H1 with optimal detection probability, for all finite n, p; precisely, one will

decide on the genuine hypothesis according to the ratio of posterior probabilities

P(X | H1)

P(X | H0)

H1

≷
H0

α (4.2)

for some α > 0 controlling the desired Type I and Type II error rates (that is, the probability

of false positives and of false negatives).

However, in practice, unless the existence of a set of previous pure-noise acquisitions is

assumed, it is quite unlikely that σ be assumed known or consistently estimated. Similarly,

if the ultimate objective (post-decision) is to estimate the data structure a under H1, a is

naturally assumed partially or completely unknown (it may be known to belong to a subset

of Rp in which case more elaborate procedures than proposed here can be carried on). In the

most generic scenario where a is fully unknown, assuming additionally the data of zero mean,

we may thus impose without generality the restriction that Under this (very restricted) prior

knowledge, instead of the maximum likelihood test in (4.2), one may resort to a generalized

likelihood ratio test (GLRT) defined as

supσ,a P(X | σ, a,H1)

supσ,a P(X | σ, a,H0)

H1

≷
H0

α.
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Under both Gaussian noise and signal si assumption, the GLRT has an explicit expression

that appears to be a monotonously increasing function of ∥XX⊤∥/tr(XX⊤). That is, the

test is equivalent to

Tp ≡
∥ 1
n
XX⊤∥

1
p
tr
(
1
n
XX⊤

) H1

≷
H0

f(α),

(Wax and Kailath (1985) and Anderson (1963) has a detailed discussion on this idea) for

some known monotonously increasing function f . Here we introduced the normalizations

1/p and 1/n so that both the numerator and denominator are of order O(1) as n, p→ ∞.

Since the ratio Tp has limit (1 +
√
c)2 under the H0 asymptotics, f(α) must be of the

form f(α) = (1 +
√
c)2 + g(α) for some g(α) > 0. Also, as we know that 1

p
tr
(
1
n
XX⊤)

fluctuates at the speed O(n−1), while ∥ 1
n
XX⊤∥ fluctuates at the slower speed O(n−2/3) (as

per Theorem 6), the global fluctuation is dominated by the numerator at a rate of order

O(n−2/3), i.e., we have under H0,

Tp
H0= (1 +

√
c)2 +O(n−2/3).

Since the denominator essentially converges (at an O(n−1) rate) while the numerator still

fluctuates (at an O(n−2/3) rate), despite the dependence between both, only the fluctuations

of the numerator 1
n
XX⊤ influence the behavior of the ratio Tp, and thus

Tp
H0∼ (1 +

√
c)2 + (1 +

√
c)
4

3
c−

1
6n− 2

3TW + o(n−2/3),

where TW denotes the Tracy-Widom Distribution. As a consequence, in order to set a

maximum false alarm rate (or false positive, or Type I error) of r > 0 in the limit of large

n, p, one must choose a threshold f(α) for Tp such that

P(Tp ≥ f(α)) = r,

that is, such that

µTW([Ap,+∞)) = r, Ap = (f(α)− (1 +
√
c)2)(1 +

√
c)−

4
3 c

1
6n

2
3 (3.2)
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with µTW, the Tracy-Widom measure.

For testing problems on covariance matrices, with a both-sided alternative, based on

a normal random sample, instead of Tracy-Widom law, one can also use Theorem 1. For

X1, · · · , Xn
iid∼ Np(µ,Σ) where µ,Σ are unknown and p, n are both large and, p ∼ n

1
2
−ϵ,

ϵ > 0. Consider the testing problem with a two-sided alternative,

H0 : Σ = Σ0

H1 : Σ ̸= Σ0

(4.3)

From Theorem 1, it turns out

ϕ(X) = 1

(√
n− 1

2p

∣∣∣∣∣
p∑

i=1

log

(
λ̂i
λi

)
−

p∑
i=1

log(n− p+ i)

∣∣∣∣∣ > zα/2

)
(4.4)

is an asymptotically size α test, where λ̂1, · · · , λ̂p are the eigenvalues of the sample covariance

matrix S = 1
n−1

∑n
i=1(Xi −Xn)(Xi −Xn)

T , λ1, · · · , λp are the eigenvalues of Σ0, α ∈ (0, 1)

and zα is the (1− α)th quantile of N(0,1).

The same idea can be generalized for testing problems of the covariance matrices in high-

dimensional Linear Regression when the number of response variables and number of data

points are both large. Consider the multivariate Linear Regression model,

Y = XB+ E (4.5)

where Y = [Y1 : · · · : Ym] ∈ Rn×m is the response matrix consisting n observations for

each of the m response variable, X ∈ Rn×p is the design matrix where p is the number of

covariates. E denotes the error matrix. For inference purposes, it is further assumed that

E ∼ NDM(0,Σ) i.e. rows of E are iid from N(0,Σ). Consider the testing problem with a

two-sided alternative, as in (4.3) i.e.

H0 : Σ = Σ0

H1 : Σ ̸= Σ0
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Under H0, the sum of squares of error (SSE) defined as YT (I−PX)Y, where PX is the

orthogonal projection matrix of C(X) follows Wm(Σ0, n − r) with r to be the rank of X.

Therefore an asymptotically level α test to test (4.3) is given by

ϕR := 1

(√
n− r

2m

∣∣∣∣∣
m∑
i=1

log

(
λ̂i
λi

)
−

m∑
i=1

log(n− r − k + i)

∣∣∣∣∣ > zα/2

)
(4.6)

where λ̂1, · · · , λ̂p are the eigenvalues of SSE = YT (I−PX)Y, λ1, · · · , λp are the eigen-

values of Σ0, α ∈ (0, 1) and zα is the (1− α)th quantile of N(0,1).

The same idea can be generalized for the two sample tests of equality for covariance

matrices as well. Suppose we have data points X1, · · · , Xm
iid∼ Np(µ1,Σ1) and Y1, · · · , Yn

iid∼

Np(µ2,Σ2) where µ1, µ2,Σ1,Σ2 are unknown. n ≡ n(m) satisfies limm→∞
n
m

= c ∈ (0,∞).

Consider the testing problem,

H0 : Σ1 = Σ2

H1 : Σ1 ̸= Σ2

(4.7)

Then by Theorem 1 it turns out that

ϕ(X,Y) := 1

(√
m

2p
(
1 + 1

c

) ∣∣∣∣∣
p∑

i=1

log

(
λ̂i

λ̂∗i

)
−

p∑
i=1

log

(
n− p+ i

m− p+ i

)∣∣∣∣∣ > zα/2

)
(4.8)

is an asymptotically level α test where λ̂1, · · · , λ̂p are the eigenvalues of the sample covari-

ance matrix Sx = 1
m−1

∑m
i=1(Xi −Xm)(Xi −Xm)

T , λ̂∗1, · · · , λ̂∗p are the eigenvalues of SY =

1
n−1

∑n
i=1(Yi−Y n)(Yi−Y n)

T , α ∈ (0, 1) and zα is the (1−α)th quantile of N(0,1). The power

function for this test is given by, β(Σ1,Σ2) := 1 − Φ

(
zα/2 −

√
m

2p(1+ 1
c)

∑p
i=1 log

(
λi

λ∗
i

))
+

Φ

(
−zα/2 −

√
m

2p(1+ 1
c)

∑p
i=1 log

(
λi

λ∗
i

))
+ f(n,m) where f(n,m) = O

(
p
(

1√
m
+ 1√

n

))
.

The same test can be done using the asymptotic theory of the largest root of F−type

matrices as well. Since SY is almost surely invertible, we can define the test,

ϕF := 1

(
n̆
m̆
λ1 − µJ,p

σJ,p
> F−1

1 (1− α)

)
(4.9)
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where n̆, m̆, µJ,p, σJ,p, F1(·) are as in Theorem 8 and λ1 is the largest root of

(
(n− 1)SY

)−1(
(m− 1)SX

)
By Theorem 8, ϕF turns out to be an asymptotic size α test.

For the high-dimensional linear regression model defined in (4.5), one can also obtain a

high-dimensional generalization of Wald’s test using the asymptotic theories of the F−type

matrices. Consider the wald’s testing problem

H0 : L
TB = B0

H1 : L
TB ̸= B0

(4.10)

where L ∈ Rp×k and rank of L is k. If the design matrix X has full column rank, i.e. ρ(X) = p,

the Ordinary Least Squares (OLS) estimate for B is given by B̂ = (XTX)−1XTY. Then

under H0,

Ap := (LTB̂−B0)
T(LT(XTX)−1L)−1(LTB̂−B0)

Ho∼ Wm(Σ, k) (4.11)

and

Bp = YT(I−PX)Y ∼ Wm(Σ, n− p) (4.12)

and Ap,Bp are independent. Let λ1 be the largest root of det(λAp − Bp). Then from

Theorem 8, it turns out that a normalized version of λ1 asymptotically follows Tracy-Widom

Distribution under H0. Therefore, in view of Theorem 8, one can construct an asymptotic

size α test using λ1.

4.2 Application in PCA

In Section 3.1 we discussed the LSD and asymptotic properties of the sample covariance

matrix under the Gaussianity assumption when the eigenvalues of the population covariance

matrix are either identical or are evenly spread out so that none of them “sticks out” from
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the bulk. Soshnikov (2002) proved the distributional limits under weaker assumptions, in

addition to deriving distributional limits of the k−th largest eigenvalue, for fixed but arbi-

trary k. Under the Gaussianity assumption of the data, the asymptotic distribution of the

eigenvalues of the sample covariance matrix also turns out to be Gaussian if the eigenvalues

of the population covariance matrix are distinct.

Theorem 9 (Mardia et al. (2024)). Let X1, · · · , Xn
iid∼ Np(0,Σ) where Σ is positive definite

with all distinct eigenvalues λ1 > · · ·λp > 0. Let ln,1 ⩾ · · · ⩾ ln,p be the eigenvalues of

1
n

∑n
i=1XiX

T
i and Λ = diag(λ1, · · · , λp). Then

√
n(ln − λ)

L−→ Np(0, 2Λ
2) (4.13)

as n→ ∞ where ln =

ln,1...
ln,p

 and λ =

λ1...
λp


So the consistency of the sample eigenvalues of the sample covariance matrix holds when

the population covariance matrix has either all eigenvalues identical or all distinct from

each other. However, in recent years, researchers in various fields have been using different

versions of covariance matrices of growing dimensions with special patterns. For instance,

in speech recognition (Hastie et al. (1995)), wireless communication (Telatar (1999)), and

statistical learning (Hoyle and Rattray (2003)) a few of the sample eigenvalues have limiting

behavior that is different from the behavior when the covariance is the identity.

While high-dimensional data often exhibits complex patterns, it’s frequently character-

ized by a simple underlying structure. This structure can be modeled as a low-dimensional

"signal" obscured by high-dimensional "noise." Assuming an additive relationship between

these components, we can represent the data using a factor model. Factor models are partic-

ularly useful for detecting and estimating low-dimensional signals within isotropic or nearly

isotropic noise. Key statistical questions, such as those related to dimension reduction, can

31



be effectively addressed by analyzing the eigenvalues and eigenvectors of the sample covari-

ance matrix. A particularly useful idealized model of this kind, named the spiked covariance

model by Johnstone (2001) has been in use for quite some time in statistics. Under this

model, the population covariance matrix Σ is expressed as

Σ =
M∑
j=1

λjθjθ
∗
j + σ2Ip, (4.14)

where θ1, ..., θM are orthonormal; λ1 ≥ ... ≥ λM > 0 and σ2 > 0. This model implies that,

except for M leading eigenvalues lj = λj +σ
2 for j = 1, ...,M , the rest of the eigenvalues are

all equal.

This model has been studied extensively in the context of high-dimensional PCA since

it brings out several key issues associated with dimension reduction in the high-dimensional

context. Johnstone and Lu (2009) first demonstrated that if p
n

→ γ ∈ (0,∞) the sam-

ple principal components are inconsistent estimates of the population principal components

under (4.14). This phase transition phenomenon is described in its simplest form in the

following theorem, where, for convenience, we assume in (4.14) σ2 = 1.

Theorem 10 (Baik and Silverstein (2006)). Suppose that Σ is a p×p positive definite matrix

with eigenvalues ℓ1 ≥ · · · ≥ ℓM > 1 = · · · = 1, and let ℓ̂1 ≥ · · · ≥ ℓ̂p be the eigenvalues of the

sample covariance matrix S = n−1Σ1/2ZZ∗Σ1/2 where the p×n data matrix Z has i.i.d. real

or complex entries with zero mean, unit variance and finite fourth moment. Suppose that

p, n→ ∞ such that p/n→ γ ∈ (0,∞). Then, for each fixed j = 1, 2, · · · ,M

ℓ̂j
a.s.−−→

{
(1 +

√
γ)2 if ℓj ≤ 1 +

√
γ,

ℓj

(
1 + γ

ℓj−1

)
if ℓj > 1 +

√
γ.

(4.15)

Therefore, when the population covariance matrix is of the spike form, it might not be

such a good idea to use Principal Component Analysis (PCA) for dimension reduction in

a high-dimensional setting, at least not in its standard form. In this regard, one natural
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question is how one can test if the population covariance matrix Σ is in the form of (4.14)

and how bad the inconsistency of the sample principal components if Σ is in spike form.

The following theorem provides an answer to these questions.

Theorem 11 (Paul (2007)). Suppose that X1, · · · , Xn
iid∼ Np(0,Σ) where Σ is a p×p positive

definite matrix with eigenvalues ℓ1 ≥ · · · ≥ ℓM > 1 = · · · = 1, and let ℓ̂1 ≥ · · · ≥ ℓ̂p be the

eigenvalues of the sample covariance matrix S = 1
n

∑n
i=1XiX

T
i . Suppose that p, n→ ∞ such

that p
n
− γ = o(n−1/2) for a γ ∈ (0,∞). For a fixed j ∈ {1, 2, · · · ,M} if ℓj > 1 +

√
γ, then

√
n

(
ℓ̂j − ℓj

(
1 +

γ

ℓj − 1

))
L−→ N(0, σ2(ℓj)) (4.16)

as n→ ∞ where σ2(ℓ) := 2ℓ2
(
1− γ

(ℓ−1)2

)
Suppose that we test the hypothesis H0 : Σ = I versus the alternative that H1 : Σ =

diag(ℓ1, . . . , ℓM , 1, . . . , 1) with ℓ1 ≥ · · · ≥ ℓM > 1, based on i.i.d. observations from N(0,Σ).

If ℓ1 > 1 +
√
γ, it follows from Theorem 10 that the largest root test is asymptotically

consistent. For the special case when ℓ1 is of multiplicity one, Theorem 11 gives an expression

for the asymptotic power function, assuming that p/n converges to γ fast enough, as n →

∞. One has to view this in context since the result is derived under the assumption that

ℓ1, . . . , ℓM are all fixed, and we do not have a rate of convergence for the distribution of ℓ̂1

toward normality. However, Theorem 11 can be used to find confidence intervals for the

larger eigenvalues under the non-null model.

Under the same set of assumptions as of Theorem 11, Paul (2007) proved further that, if

ℓj ⩽ 1+
√
γ and ℓj is of arithmetic multiplicity one, then the angle between the j−th sample

and population eigenvectors converges to π
2

almost surely which essentially shows in which

extent the sample principal components can be inconsistent and provides a generalization of

Johnstone and Lu (2009). Later on Bai and Zhou (2008) extends the results of Paul (2007)

in the context of spiked covariance matrix by dropping the Gaussianity assumption.
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Figure 3: (Paul (2007)) An illustration of the phase transition of eigenvalues in a spiked
covariance model: here, p = 50, n = 200 and eigenvalues of the covariance matrix are
ℓ1 = 2.5, ℓ2 = 1.5, ℓj = 1 for j = 3, . . . , p. So, ℓ1 > 1 +

√
p/n and ℓ2 = 1+

√
p/n. Blue dots

correspond to the population eigenvalues. Black circles correspond to the sample eigenvalues
(based on i.i.d. Gaussian samples) for 50 replicates. Solid red circles indicate the theoretical
limits of the first two eigenvalues for γ = p/n = 0.25.

4.3 On signal processing and wireless communications

Large random matrices come up often in signal processing, especially in wireless commu-

nication. Bai and Silverstein (2010), Couillet and Debbah (2011), and Tulino et al. (2004)

highlight several such cases, including: (i) finding the channel capacity of MIMO (multiple-

input-multiple-output) systems, which involves calculating the logarithm of the determinant

of the matrix I+ S, where S is a Wishart matrix that reflects the signal-to-noise ratio in

transmission; (ii) finding the limiting SINR (signal-to-interference-noise ratio) in random

channels and in linearly precoded systems, like CDMA (code-division-multiple-access) sys-

tems (Bai and Silverstein (2007)); (iii) analyzing the performance of receivers as the system

size grows; and (iv) estimating energy from multiple sources (Couillet and Debbah (2011)).

Besides, random matrices are useful in a variety of signal-processing problems, such as detect-
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ing input signals (Nadakuditi and Silverstein (2010); Silverstein and Combettes (1992)) and

estimating subspaces in sensor networks (Hachem et al. (2013)). Furthermore, the asymp-

totic distribution of the spectra of large random matrices and the idea behind Roy’s largest

root test (Roy (1953), Johnstone and Nadler (2017)) can be used to construct nonparametric

tests to detect the number of signals embedded in noise (Kritchman and Nadler (2009)).

The standard setup for signals impinging on an array with sensors consists of n i.i.d

p−dimensional observations {xi}ni=1 from the model,

x(t) = As(t) + σn(t) (4.17)

sampled at n distinct times ti, where A = [a1, . . . , aK ] is the p × K steering matrix of

K linearly independent p-dimensional vectors. The K × 1 vector s(t) = [s1(t), . . . , sK(t)]
T

represents the random signals, assumed zero mean and stationary with full rank covariance

matrix. σ is the unknown noise level, and n(t) is a p × 1 additive Gaussian noise vector,

distributed N (0, Ip) and independent of s(t).

Under these assumptions, the population covariance matrix Σ of x(t) has a diagonal

form,

WHΣW = σ2Ip + diag(λ1, . . . , λK , 0, . . . , 0) (4.18)

where columns of W forms a basis of Cp (or of Rp if the signals are real valued). Let Sn be

the sample covariance matrix of {xi}ni=1, defined as

Sn =
1

n

n∑
i=1

xix
H
i

having the eigenvalues l1 ⩾ l2 ⩾ · · · ⩾ lp.

The number of signals K, can then be estimated with the number of eigenvalues of

the sample covariance matrix Sn which are significanly larger i.e. bigger than a certain

threshold, where the individual thresholds for the eigenvalues can be determined using the
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Tracy Widom laws (Theorem 6). The following algorithm, which is deeply motivated by

Roy’s largest root test (Roy (1953), Johnstone and Nadler (2017)), takes the eigenvalues

l1, · · · , lp of the sample covariance matrix Sn as input and gives the estimated number of

signals K̂RMT as output. The algorithm works as follows: For k = 1, . . . ,min(p, n) − 1, we

test

H0 : at most k − 1 signals vs. H1 : at least k signals.

Under the null hypothesis, ℓk arises from noise. Thus, we reject H0 if ℓk is too large, i.e.

ℓk > σ̂2(k)Cn,p,k(α)

where σ̂2(k) is an estimate for the unknown noise level σ2 taken to be,

σ̂2(k) =
1

p− k

p∑
j=k+1

lj (4.19)

and

Cn,p,k(α) = µn,p−k + s(α)ξn,p−k (4.20)

where µn,p and ξn,p are the centering and scaling parameters defined as

µn,p =
1

n
(
√
n− 1/2 +

√
p− 1/2)2

ξn,p =

√
µn,p

n

(
1√

n− 1/2
+

1√
p− 1/2

)1/3 (4.21)

and s(α) is the 1 − α quantile of the Tracy Widom distribution. Kritchman and Nadler

(2009) showed,

Pr{reject H0|H0} = Pr{ℓk > σ2Cn,p,k(α)|H0} ≈ α.

Hence, α controls the probability of model overestimation. We stop at the smallest index k

where the above condition fails, i.e., the first time we accept H0. Our estimate of the number

of signals is then K̂RMT = k − 1. Hence, the estimator of the number of signals is,

K̂RMT = argmin
k

{
ℓk < σ̂2(k)(µn,p−k + s(α)ξn,p−k)

}
− 1.
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Algorithm 1: Algorithm for detecting number of signals (Kritchman and Nadler
(2009))
Input: Confidence level α, observations ℓk for k = 1, . . . ,min(p, n)− 1
Output: Estimated number of signals K̂RMT

for k = 1 to min(p, n)− 1 do
Compute the threshold σ̂2(k)Cn,p,k(α) using 4.19, 4.20;
if ℓk > σ̂2(k)Cn,p,k(α) then

conclude that there are at least k signals and set k = k + 1 ;
else

conclude that there are at most k − 1 signals;
Set K̂RMT = k − 1;
break;

return K̂RMT = argmink {ℓk < σ̂2(k)(µn,p−k + s(α)ξn,p−k)} − 1;

For a suitably chosen sequence of {α}n, K̂RMT,n can be shown to be consistent i.e.

lim
n→∞

P(K̂RMT,n = K) = 1 (Kritchman and Nadler (2009)) where K is the original number of

signals.

To demonstrate the performance of the above algorithm, We plot the number of estimated

signals when the actual number of signals is in a range of 2 to 5 and the errors are from

Standard Normal, t−distribution with 5 df, Cauchy and Laplace distribution. Also, we vary

the sample size n in a range up to 5000. From Figure 4 it can be seen that, except when

the noise has standard Cauchy distribution, if the sample size exceeds 1000, the estimated

number of signals is the same as the original number of signals. The algorithm overestimates

the number of signals for noise arriving from the Cauchy distribution.
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Figure 4: Number of Estimated Signals for different noise distributions: (in clockwise order)
Standard Normal, t distribution with 5 df, Standard Cauchy, Double Exponential. The x-
axis represents the sample size.

4.4 On Changepoint Detection

Change point detection (CPD) is a statistical method used to identify points in a dataset

where the distribution of the data changes significantly. Studies of change-point detection

problems date back to 1950. Since then, this topic has been of interest to statisticians and

researchers in many other fields such as engineering, economics, climatology, biosciences,

genomics, and linguistics due to its diverse applications. Different methods in parametric
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and nonparametric setups have been discovered (Niu et al. (2016), Aminikhanghahi and Cook

(2017)) for univariate and multivariate time series data. However, when the data is ultrahigh

dimensional, most of these traditional methods struggle due to computational complexity or

the failure to meet the underlying distributional assumptions. For example, to determine the

change of covariance in high dimensional time series data, the sample covariance matrices

are used which are extremely large dimensional. In this section, we discuss some methods of

detecting change in covariance pattern of high dimensional time series which are motivated

by the results of random matrix theory. Change point detection algorithms are traditionally

classified as “online” or “offline.” We focus on the Offline setting, which considers the entire

data set at once and looks back in time to recognize where the change occurred.

The literature on detecting changes in covariance for high dimensional time series has

grown substantially in the last few years. Based on the theory of large-scale random matrices

in Hero and Rajaratnam (2012), Banerjee et al. (2015) has developed a method for covariance

CPD when the data points are independently drawn from an unknown elliptically contoured

distribution. Avanesov and Buzun (2018), Wang et al. (2017) obtain method based on

the distance between sample covariance matrices, using the operator norm and l∞ norm of

matrices, respectively.

In particular, many authors consider changes in the moderate dimensional setting, that is,

where the number of the parameters of the model is of the order of the number of data points.

Ryan and Killick (2023) proposes a novel method for detecting changes in the covariance

structure of moderate dimensional time series. Let X1, . . . , Xn ∈ Rp be independent p-

dimensional vectors with

cov(Xi) = Σi,p, for 1 ≤ i ≤ n,

where each Σi,p ∈ Rp×p is of full rank. Furthermore, let Xn,p denote an n× p matrix defined

by Xn,p := (XT
1 , . . . , X

T
n )

T . The method primarily aims to develop a testing procedure that
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can identify a change in the covariance structure of the data over time. For now, let us

consider the case of a single changepoint. We compare a null hypothesis of the data sharing

the same covariance versus an alternative setting that allows a single change at time τ .

Formally we have

H0 : Σ1,p = · · · = Σn,p

H1 : Σ1,p = · · · = Στ,p ̸= Στ+1,p = . . .Σn,p

(4.22)

where τ is unknown. We are interested in distinguishing between the null and alternative

hypothesis, and under the alternative locating the changepoint τ , when the dimension of the

data p, is of comparable to the sample size, n. In particular, we require that for all pairs

n, p, the set

Tn,p(ℓ) := {t ∈ Z+ such that ℓ < t < n− ℓ} (2.4)

is nonempty, where ℓ > p is a problem dependent positive constant. Note Tn,p(ℓ) defines the

set of possible candidate changepoints, while ℓ is the minimum distance between changepoints

or minimum segment length. Then for each candidate changepoint t ∈ Tn,p(ℓ), a two-sample

test statistic T (t) can be used to determine if the data to the left and right of the changepoint

have different distributions. If the two sample test statistic for a candidate exceeds some

threshold, then we say a change has occurred and an estimator for τ is given by the value

t ∈ Tn,p(ℓ) that maximizes T (t).

In their method Ryan and Killick (2023), constructs the two sample test statistics using

the eigenvalues of the sample covariance matrices of the two samples as follows. For two

sample covariance matrices A,B, in this context, we need to test whether A and B are

equal or not. So in case they are identical, all of the eigenvalues of R(A,B) := B−1A is 1.

Therefore, the following function of the ratio matrix (or F−type matrix) R(A,B), gives a

suitable measure of deviance from the equality of the two matrices,

T (A,B) =

p∑
j=1

(1− λj(R(A,B)))2 +
(
1− λ−1

j (R(A,B))
)2 (4.23)
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where λj(R(A,B)) is the jth largest eigenvalue of the matrix R(A,B). The function T has

valuable properties that may not be immediately obvious.

Proposition 1 (Ryan and Killick (2023)). Let Σ1,Σ2 ∈ Rp×p be the covariance matrices of

data Z1 ∈ Rn1×p and Z2 ∈ Rn2×p, respectively, and define T as in (2.5). Then we have that,

for any covariance matrix Σ0:

1. T is symmetric, that is, T (Σ1,Σ2) = T (Σ2,Σ1);

2. T is symmetric with respect to the inversion of matrices, that is,

T (Σ1,Σ2) = T (Σ−1
1 ,Σ−1

2 );

3. If Σ1 = Σ0Z
T
1Z1Σ0 and Σ2 = Σ0Z

T
2Z2Σ0, then

T (Σ1,Σ2) = T (ZT
1Z1,Z

T
2Z2).

The symmetry property is important for a changepoint analysis as the segmentation

should be the same regardless of whether the data is read forward or backward. The second

property states that T is the same whether we examine the covariance matrix or the pre-

cision matrix. This ensures that differences between both small and large eigenvalues can

be detected. The third property is particularly important as we can translate Proposition 1

from two separate datasets Z1,Z2 to two subsets of a single dataset Xn,p. This implies that

T provides a test statistic that is independent of the underlying covariance of the data. it is

to be noted that the function involves ratio matrices which are widely used in multivariate

analysis to compare covariance matrices (Finn (1974)). In particular functions of the eigen-

values of the ratio matrices are standard in literature (Wilks (1932), Lawley (1938), Potthoff

and Roy (1964)) for inference and methodologies involving covariance matrices. Theorem 7

also discusses the the LSD of the ratio matrics R(A,B) under suitable conditions. Using
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the LSD of the ratio matrices, Ryan and Killick (2023) finds the asymptotic distribution of

T (A,B) for two sample covariance matrices as presented in the following theorem, which

gives the framework of the changepoint detection method.

Theorem 12 (Ryan and Killick (2023)). Let Xn1,p ∈ Rn1×p and Xn2,p ∈ Rn2×p be random

matrices with independent not necessarily identically distributed entries {Xn1,i,j, 1 ≤ i ≤

n1, 1 ≤ j ≤ p} and {Xn2,k,j, 1 ≤ k ≤ n2, 1 ≤ j ≤ p} with mean 0, variance 1 and fourth

moment 1 + κ. Furthermore, for any fixed η > 0,

1

n1p

p∑
j=1

n1∑
i=1

E|Xn1,i,j|41(|Xn1,j,k| ≥ η
√
n1) → 0 (3.7)

1

n2p

p∑
j=1

n2∑
i=1

E|Xn2,i,j|41(|Xn2,j,k| ≥ η
√
n2) → 0 (3.8)

as n1, n2, p tend to infinity such that p
n1

→ γ1 ∈ (0, 1), p
n2

→ γ2 ∈ (0, 1), γ = (γ1, γ2) and 1(·)

denotes the indicator function. Then as n→ ∞,

T

(
1

n1

XT
n1,p

Xn1,p,
1

n2

XT
n2,p

Xn2,p

)
− p

∫
f ∗(x)dFγ(x) → N(µ(γ), σ2(γ))

where

T (A,B) =

p∑
j=1

[
(1− λj(B

−1A))2 + (1− λ−1
j (B−1A))2

]
(λj is jth maximum eigenvalue),

(4.24)

f ∗(x) = (1− x)2 + (1− 1/x)2, (4.25)

µ(γ) = 2K3,1

(
1− γ2/h

2
)
+ 2K2,1γ2/h+ 2K3,2

(
1− γ21/h

2
)
+ 2K2,2γ1/h, (4.26)

σ2(γ) =
2(K2

2,1 +K2
3,1 + 2K2

3,2)

h(h2 − 1)
+

(J1K2,1/h− J1K3,1(h
2 + 1))

h2 + (h2 − 1)
(4.27)

+
(J2K2,12h)/(h

2 − 1)3 + J2K3,1(1− 3h2))

h(h2 − 1)3)
(4.28)

K2,1 =
2h(1 + h2)

(1− γ2)4 − 2h/(1− γ2)2
, K2,2 =

2h(1 + h2)2

(1− γ1)4
− 2h/(1− γ1)

2, (4.29)
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K3,1 =
h2

(1− γ1)4
, K3,2 =

−2(1− γ2)
2

(1− γ2)4
, J2 = (1− γ2)

4, J1 = −2(1− γ2)
2, (4.30)

h =
√
γ1 + γ2 − γ1γ2, γ1 = p/n1, γ2 = p/n2, (4.31)

Fγ(dx) =
1− γ2

2πx(γ1 + γ2x)

√
(b− x)(x− a)I[a,b](x)dx, (4.32)

a =
(1− h)2

(1− γ2)2
, b =

(1 + h)2

(1− γ2)2
. (4.33)

So, using Theorem 12 we can immediately have a normalized version of T , i.e.

T̃ = σ−1(γ)

(
T

(
1

n1

XT
n1,p

Xn1,p,
1

n2

XT
n2,p

Xn2,p

)
− p

∫
f ∗(x)dFγ(x)− µ(γ)

)
(4.34)

which will be asymptotically standard normal, and hence we can use the quantile of standard

normal with multiple testing corrections (Haynes (2013)) to test hypothesis 4.22. So using

Theorem 12, given one dataset we can test whether the data has one changepoint or not.

For the case of Multiple changepoints, the method is generalized using the classic binary

segmentation procedure (Scott and Knott (1974)).

The binary segmentation method extends a single changepoint test as follows. First,

the test is run on the whole data. While running on a particular interval of time (s, e),

for each timepoint τ in that range (except leaving l many timepoints from both sides of

the interval, for efficiency purposes as the testing procedure is asymptotic) the algorithm

finds the normalized test statistic T̃ (τ) (as in Equation (4.34)) by breaking the datapoints

into two parts pivoting τ and then finds the maximum value of the test statistic T̃ (τ)

over τ in that interval (s + l, e − l) and check if that exceeds a cutoff ν to guarantee the

existence of a changepoint in the interval (s, e). If no change is found then the algorithm

terminates. If a changepoint is found, it is added to the list of estimated changepoints,

and the binary segmentation procedure is then run on the data to the left and right of

the candidate change. This process continues until no more changes are found. Note the

threshold, ν, and the minimum segment length, ℓ, remain the same. Note that several
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extensions of the traditional binary segmentation procedure have been proposed in recent

years (Olshen et al. (2004); Fryzlewicz (2014)) which may be used to generalize the algorithm

of Ryan and Killick (2023). The full proposed procedure is described in algorithm 2.

Algorithm 2: Ratio Binary Segmentation (RatioBinSeg) (Ryan and Killick (2023))
Input: Data matrix X, interval (s, e), set of changepoints C, minimum segment

length ℓ, significance level α
Output: Set of changepoints C
Set ν = Φ−1(1− α

n2 ), where Φ(·) N(0,1) CDF;
for τ = s+ ℓ to e− ℓ do

Compute γ :=
(
p
τ
, p
n−τ

)
;

Compute T̃ (τ) := σ−1/2(γ)
(
T
(
Σ(s, τ),Σ(τ, e)

)
− p

∫
f ∗(x)dFy − µ(γ)

)
;

end
Set τ̂ := argmaxτ T̃ (τ) for s+ ℓ < τ < e− ℓ;
if T̃ (τ̂) > ν then

Set Cl := RatioBinSeg(X, (s, τ̂), C, ℓ, α);
Set Cr := RatioBinSeg(X, (τ̂ , e), C, ℓ, α);
Update C = C ∪ {τ̂} ∪ Cl ∪ Cr;

end
return Set of changepoints C;

In the algorithm, Σ̄ is the natural estimate of Σ based on the data in the corresponding

time interval.

For the multiple changepoint setting, let τ := {τ1, ..., τm} and τ̂ := {τ̂1, ..., τ̂m} to denote

the set of true changepoints and the set of estimated changepoints, respectively. The change-

point τi is said to be detected correctly if |τ̂j − τi| ≤ h for some 1 ≤ j ≤ m̂ and denote the

set of correctly estimated changes by τ̂c. h = 20 is chosen for simulation, although it should

be noted that in reality, the desired accuracy would be application-specific and dependent

on the minimum segment length l. Then the False Positive Rate (FPR) is defined as the

number of wrongly detected changepoints out of the detected ones, i.e.

FPR =
|τ̂ | − |τ̂c|

|τ̂ |

Table for FPR for this method and Wang et al. (2017) for various n and p are in Table 2
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Table 2: Comparison of FPR for various n, p
Assumptions of Ryan and Killick (2023) Assumptions of Wang et al. (2017)

p n Ratio Wang Ratio Wang
3 500 0.24 0.63 0.10 0.64
3 1000 0.28 0.77 0.14 0.80
3 2000 0.31 0.85 0.16 0.88
3 5000 0.31 0.90 0.17 0.92
10 500 0.16 0.27 0.23 0.39
10 1000 0.13 0.43 0.24 0.62
10 2000 0.10 0.53 0.24 0.75
10 5000 0.09 0.62 0.19 0.80
30 2000 0.02 0.32 0.03 0.58
30 5000 0.02 0.31 0.03 0.78
100 5000 0.00 0.45 0.00 0.18

5 Conclusion and Future directions

This article highlights the profound role of random matrix theory (RMT) in addressing chal-

lenges arising in high-dimensional statistics. By leveraging the asymptotic spectral properties

of large random matrices, particularly covariance matrices, and ratios of covariance matri-

ces, RMT provides a novel theoretical foundation for statistical methods. The exploration

of both the bulk spectrum and the extreme eigenvalues underscores the versatility of these

tools in understanding high-dimensional data structures.

The applications discussed in this article demonstrate the practical relevance of RMT.

From inference on covariance matrices to dimensionality reduction through PCA, noise re-

duction in signal processing, and changepoint detection, RMT proves to be an indispensable

framework for tackling modern statistical problems. The unifying principles of RMT not

only enhance the theoretical understanding of high-dimensional phenomena but also drive

the development of innovative methodologies in diverse fields.

This work provides an inspection of the bridge between the mathematical elegance of

random matrix theory and its impactful applications in statistics, emphasizing the potential
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for further exploration and development in this vibrant intersection of disciplines. We discuss

some of the future directions of application of RMT, which has a great potential:

• Most of the results in RMT are based on iid observations. Though work has been done

for certain covariance patterns as well, however, there is a great potential for extending

the current theory on the eigenvalues of Wishart-type matrices, when the columns of

the data matrix can be viewed as a realization of a high-dimensional multivariate time

series, and that can have a significant impact on econometrics and finance.

• The RMT-based methods can be generalized when there are missing values in the

dataset. For example, in high-dimensional spatiotemporal statistics, for each time-

point, the spatial data is in the form of a matrix. In most cases, for each time point,

there are a couple of missing values in the matrix consisting of the spatial data at

that time point. In literature, in case it is assumed that the spatial data arises from a

random field. Deb et al. (2017) has a detailed discussion about the spectral analysis of

such datasets coming from a random field. However, the asymptotic theory provided

there assumes the data dimension to be fixed. So generalization of these results using

the asymptotic theories of large random matrices is an open problem yet to be solved.

• A potentially useful avenue for the application of RMT is in numerical optimization

algorithms that use gradient-based methods for large dimensional data. While there

has been explosive growth in mathematical descriptions in the RMT literature, com-

putational tools have not kept pace with the theoretical developments. Integration of

computational tools with tools for the analysis of large dimensional data using RMT

principles has the potential to create a new paradigm for statistical practices.
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6 Appendix

Proof of Theorem 1: Given Xn ∼ Wp(Σ, n) where n ⩾ p. Let λ(n)1 , · · · , λ(n)p be the

eigenvalues of Xn and λ1, · · · , λp be the eigenvalues of Σ. For a random variable X, let

FX(·) be its CDF and for two CDFs F and G, define

∆(F,G) := sup
x∈R

|F (x)−G(x)| (6.1)

We first prove a couple of lemmas needed for the proof.

Lemma 1: Let Xn, Yn, X, Y be real-valued random variables having a joint distribution

such that (Xn, X) is independent of (Yn, Y ). Then

∆(FXn+Yn , FX+Y ) ⩽ ∆(FXn , FX) + ∆(FYn , FY ) (6.2)

Proof of Lemma 1: Fix x ∈ R. Then observe that,

|P(Xn + Yn ⩽ x)− P(X + Y ⩽ x)|

= |E (P(Xn ⩽ x− Yn)− P(X ⩽ x− Y )|Yn, Y ) |

= |E(P(Xn ⩽ x− Yn)− P(Xn ⩽ x− Y ) + P(Xn ⩽ x− Y )− P(X ⩽ x− Y )
∣∣Yn, Y )|

= |E(P(Xn ⩽ x− Yn)− P(Xn ⩽ x− Y )
∣∣Yn, Y )|+ E

∣∣P(Xn ⩽ x− Y )− P(X ⩽ x− Y )
∣∣Yn, Y )

= I + II (say)

Observe that II ⩽ ∆(FXn , FX) and

I =
∣∣P(Xn + Yn ⩽ x)− P(Xn + Y ⩽ x)

∣∣
=
∣∣E(P(Yn ⩽ x−Xn)− P(Y ⩽ x−Xn)

∣∣Xn

)∣∣
⩽ E

∣∣P(Yn ⩽ x−Xn)− P(Y ⩽ x−Xn)
∣∣Xn

)
⩽ ∆(FYn , FY )
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Thus for all x ∈ R, we have
∣∣P(Xn + Yn ⩽ x)− P(X + Y ⩽ x)

∣∣ ⩽ ∆(FXn , FX) +∆(FYn , FY ).

Hence Lemma 1 follows. ■

Lemma 2: Let Φ(·) be the N(0,1) CDF and m be a natural number. Then there exists

c > 0 such that

∆

(
Φ

(√
m

2

(
e
√

2
m
x − 1

))
,Φ(x)

)
⩽

c√
m

(6.3)

Proof of Lemma 2: Let U1, · · · , Um
iid∼ N(0, 1). Observe that, Ym :=

√
m
2
log
(
1 +

√
2 · Um

)
have cdf FYm(x) := Φ

(√
m
2

(
e
√

2
m
x − 1

))
where Um := 1

m

∑m
i=1 Ui. Consider, f(x) :=

log(1 +
√
2 · x). Since f(0) = 0 and f ′(0) =

√
2, by theorem 2.10 of Pinelis and Molzon

(2016), there exists c > 0 such that

sup
x∈R

∣∣∣∣P(√
mf(Um)

|f ′(0)|
⩽ x

)
− Φ(x)

∣∣∣∣ ⩽ c√
m

(6.4)

Since
√
mf(Um)
|f ′(0)| = Ym, we have

∆(FYm ,Φ) ⩽
c√
m

Hence Lemma 2 follows. ■

Lemma 3: [Berry Esseen type Bounds for log of χ2 random variables] Let Zm ∼ χ2
m.

Then, there exists c > 0 such that,

sup
x∈R

∣∣∣∣P(√m

2
log

(
Zm

m

)
⩽ x

)
− Φ(x)

∣∣∣∣ ⩽ c√
m

(6.5)

Proof of Lemma 3: Observe that by triangle inequality, we have

∆(G,Φ) ⩽ ∆(G,FYm) + ∆(FYm ,Φ) (6.6)

where G(x) := P
(√

m
2
log
(
Zm

m

)
⩽ x

)
and FYm is as in Lemma 2. By Lemma 2, there

exists c1 > 0, such that ∆(FYm ,Φ) ⩽
c1√
m

. By the Berry–Esseen theorem, there exists c2 > 0,

such that for all x ∈ R,

Φ(x)− c2√
m

⩽ P

(√
m

2

(
Zm

m
− 1

)
⩽ x

)
⩽ Φ(x) +

c2√
m

(6.7)
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Now G(x) = P
(√

m
2
log
(
Zm

m

)
⩽ x

)
= P

(√
m
2

(
Zm

m
− 1
)
⩽
√

m
2

(
e
√

2
m
x − 1

))
.

So by (6.7), |G(x)− FYm(x)| ⩽ c2√
m

i.e. ∆(G,FYm) ⩽
c2√
m

. Thus by (6.7), ∆(G,Φ) ⩽ c√
m

where c := c1 + c2 completing the proof of Lemma 3. ■

Now we complete the proof of the theorem. Observe that |Xn| = |Σ|U1 · · ·Up where

Uj ∼ χ2
m−p+j, j = 1, · · · , p; U1, · · · , Up mutually independent and for a matrix M, |M|

denotes the determinant of M. Thus,

sup
x∈R

∣∣∣∣∣P
(√

n

2p

(
p∑

i=1

log

(
λ
(n)
i

λi

)
−

p∑
i=1

log (n− p+ i)

)
⩽ x

)
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
(√

n

2

(
p∑

i=1

log

(
Ui

n− p+ i

))
⩽

√
px

)
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
(√

n

2

(
p∑

i=1

log

(
Ui

n− p+ i

))
⩽ x

)
− Φ

(
x
√
p

)∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
(√

n

2

(
p∑

i=1

log

(
Ui

n− p+ i

))
⩽ x

)
− P(Y1 + · · ·+ Yp ⩽ x)

∣∣∣∣∣ , Y1, · · · , Yp iid∼ N(0, 1)

⩽
p∑

i=1

sup
x∈R

∣∣∣∣∣P
(√

n

2

(
p∑

i=1

log

(
Ui

n− p+ i

))
⩽ x

)
− Φ(x)

∣∣∣∣∣ (by Lemma 1)

⩽ C

p∑
i=1

1√
n− p+ i

(by Lemma 3)

= O

(
p√
n

)

Hence Theorem 1 follows. ■
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