Trigonometry needed for I.S.I. and C.M.I. entrance

Srijan Chatterjee

Theory of trigonometry needed is as you have completed in board syllabus. So, lets focus on interesting and important problems.

Problems:

- 1) Two train lines intersect each other at a junction at an acute angle θ . A train is passing along one of the two lines. When the front of the train is at the junction, the train subtends an angle α at a station on the other line. It subtends an angle $\beta(<\alpha)$ at the same station, when its rear is at the junction, show that $\tan\theta = \frac{2\sin\alpha\sin\beta}{\sin(\alpha-\beta)}$
- 2) Consider a regular heptagon (polygon of 7 equal sides and equal angles) ABCDEFG.

A) Prove
$$\frac{1}{\sin{\frac{\pi}{7}}} = \frac{1}{\sin{\frac{2\pi}{7}}} + \frac{1}{\sin{\frac{3\pi}{7}}}$$

- B) Using A) or otherwise, show that $\frac{1}{AG} = \frac{1}{AF} + \frac{1}{AE}$.
- 3) Show that the triangle whose angles satisfy the equality

$$\frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2 \text{ is right-angled.}$$

- 4) Let $a \ge 0$ be a constant such that $\sin \sqrt{x + a} = \sin \sqrt{x}$ for all $x \ge 0$. What can you say about a? Justify your answer.
- 5) Let X, Y, Z be the angles of a triangle.
 - i) Prove that $\tan \frac{X}{2} \tan \frac{Y}{2} + \tan \frac{Y}{2} \tan \frac{Z}{2} + \tan \frac{Z}{2} \tan \frac{X}{2} = 1$.

ii) Using i) or otherwise prove that
$$\tan \frac{X}{2} \tan \frac{Y}{2} \tan \frac{Z}{2} \le \frac{1}{3\sqrt{3}}$$
.

6) For
$$x \ge 0$$
, define $f(x) = \frac{1}{x + 2\cos x}$. Determine the set $\{y \in \mathbb{R} : y = f(x), x \ge 0\}$

7) Let a, b, c be the sides of a triangle and A, B, C be the angles opposite to these sides respectively. If

$$\sin(A - B) = \frac{a}{a+b}\sin A\cos B - \frac{b}{a+b}\cos A\sin B$$

Then prove that the triangle is isosceles.

- 8) Let the sequence $\{a_n\}_{n\geq 1}$ be defined by $a_n=\tan(n\theta)$ where $\tan\theta=2$. Show that for all n, a_n is a rational number which can be written with an odd denominator.
- 9) Find all pairs (x, y) with x, y real, satisfying the equations:

$$\sin \frac{x+y}{2} = 0, |x| + |y| = 1.$$

10) For all natural numbers n, let

$$A_n = \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} [n \ many \ radicals]$$

- a) Show that for $n \geq 2$, $A_n = 2 \sin \frac{\pi}{2^{n+1}}$
- b) Evaluate the limit $\lim_{n \to \infty} 2^n A_n$
- 11) Find all solutions of $\sin^5 x + \cos^3 x = 1$.

- 12) Show that $-2 \le \cos \theta \left(\sin \theta + \sqrt{\sin^2 \theta + 3}\right) \le 2$ for all values of θ .
- 13) Find the average of the number $n \sin n^{\circ}$ for n=2,4,6,..,180.
- 14) Find the value of

$$\prod_{k=1}^{n} \left(1 + 2\cos 2\pi \cdot \frac{3^k}{3^n + 1} \right)$$

15)Prove that

$$\left(\frac{1}{2} + \cos\frac{\pi}{20}\right) \left(\frac{1}{2} + \cos\frac{3\pi}{20}\right) \left(\frac{1}{2} + \cos\frac{9\pi}{20}\right) \left(\frac{1}{2} + \cos\frac{27\pi}{20}\right) = \frac{1}{16}$$

16)Evaluate : $10 \sum_{1 \le k < s \le 1007} \cos \frac{2\pi k}{2015} \cos \frac{2\pi s}{2015}$

17) Prove that, $\frac{2}{\sqrt{2}}$, $\frac{2}{\sqrt{2+\sqrt{2}}}$, $\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}}$ up to infinite

factors= $\frac{\pi}{2}$

18) Evaluate:

$$\sum_{n=1}^{\infty} 4^n \sin^4 \frac{\pi}{2^n}$$

19)Given $x_1, x_2, \ldots, x_{2016}$ are real numbers such that $x_i \in [-1,1] \ \forall i$. If $\sum_{i=0}^{2016} x_i^3 = 0$, then find the greatest value of $\sum_{i=0}^{2016} x_i$

20) If
$$P_n = \prod_{1 \le k \le n, \gcd(k,n)=1} \sin \frac{k\pi}{n}$$
, find P_{100} .

21) Let θ_1 , θ_2 , θ_3 be three distinct solution to the equation $\tan\theta=\frac{17}{100}$ such that

$$\theta_1, \theta_2, \theta_3 \in (0,3\pi)$$
. Find value of $\sum_{1 \ i < j}^3 \tan(\frac{\theta_i}{3}) \tan(\frac{\theta_j}{3})$

- 22) The equation $ax^4 bx^3 cx^2 + dx + 1 = 0$ has a root of $\cos \frac{2\pi}{15}$ for positive integer a, b, c, d. Find a+b+c+d.
- 23)Show that there is no polynomial p(x) for which $\cos \theta = P(\sin \theta)$ for all angles θ in some non-empty interval.
- 24) Recall the function $\arctan(x)$, also denoted as $\tan^{-1} x$ Complete the sentence:

tan⁻¹ 20202019 + tan⁻¹ 20202021 2(-) tan⁻¹ 20202019 because in the relevant region, the graph of y = arctan(x). Fill in the first blank with one of the following: is less than / is equal to / is greater than. Fill in the second blank with a single correct reason consisting of one of the following phrases: is bounded / is continuous / has positive first derivative / has negative first derivative / has positive second derivative / has negative second derivative / has an inflection point.

- 25)Three positive real numbers x, y and z satisfy $x^2 + y^2 = 3^2$, $y^2 + yz + z^2 = 4^2$, $x^2 + \sqrt{3}xz + z^2 = 5^2$. Find the value of $2xy + xz + \sqrt{3}yz$.
- 26)Recall that $\sin^{-1} t$ is a function with domain [-1,1] and range $[-\frac{\pi}{2},\frac{\pi}{2}]$. Consider the function $f(x)=\sin^{-1}\sin(x)$. Find where f is well defined, continuous and differentiable.

- 27) Find the number of real solutions of $x = 99 \sin \pi x$.
- 28) If $x = cos1^{\circ}cos2^{\circ}cos3^{\circ}.....cos89^{\circ}$ and $y = cos2^{\circ}cos6^{\circ}cos10^{\circ}....cos86^{\circ}$ Then what is the integer nearest to $\frac{2}{7}\log_2(\frac{y}{x})$?
- 29) $a_1, a_2, \dots a_n$ are real numbers either +1 or -1. Prove that

$$2\sin\left[\left(a_{1} + \frac{a_{1}a_{2}}{2} + \frac{a_{1}a_{2}a_{3}}{2^{2}} + \cdots + \frac{a_{1}a_{2}a_{3}...a_{n}}{2^{n-1}}\right)\frac{\pi}{4}\right] =$$

$$a_{1}\sqrt{2 + a_{2}\sqrt{2 + a_{3}\sqrt{.....+a_{n}\sqrt{2}}}}.$$